
A cross-domain comparison of software development assurance
standards

Emmanuel Ledinot(1), Jean-Marc Astruc(2), Jean-Paul Blanquart(3), Philippe Baufreton(4), Jean-Louis Boulanger(5),
Hervé Delseny(6), Jean Gassino(7), Gérard Ladier(8), Michel Leeman(9), Joseph Machrouh(10), Philippe Quéré(11),

Bertrand Ricque(4)

(1) Contact author, Dassault Aviation, emmanuel.ledinot@dassault-aviation.com ;
(2): Continental; (3): Astrium Satellites; (4) Sagem Défense Sécurité; (5): CERTIFER; (6): Airbus;

(7): Institut de Radioprotection et de Sûreté Nucléaire; (8): Aerospace Valley; (9): Valeo; (10): Thales; (11): Renault

Abstract:
This paper compares the influence of Development
Assurance Levels (DALs) on the prescribed
objectives, activities, methods and tools of six
different software development assurance standards,
indeed that of civil aviation, automotive, space,
process automation, nuclear and railway.
Through an inventory of their respective requirements,
we attempt to compare the software safety levels
ensured by each standard for its lowest and highest
DALs.
We first explain the rationale of the comparison, i.e on
what basis we compare the securing effects of the
various process-based or product-based requirements
issued by the six software development assurance
standards. Then we review the DAL-dependent
variability of each standard and finally outline some
tentative cross-domain equivalence classes or
ranking.

Keywords: safety, software, DAL, SIL, ASIL, SSIL,
processes, standards, cross-domain comparison.

1. Introduction

We present an analysis of the following software
safety standards: aeronautics' DO-178/ED-12,
automation's IEC 61508, automotive's ISO 26262,
nuclear's IEC 60880, railway's EN 50128 and space's
ECSS-Q-ST-80C, paying particular attention to the
way Development Assurance Levels drive the
increase of prescribed objectives, activities, methods
or safety mechanisms to be implemented.
We then attempt to answer the following questions:
are these standards comparable with respect to the
software safety levels they claim to ensure? Does the
DAL-dependent progressive construction of software
safety rely on the same principles in the various
industrial omnibet domains?
We first explain the rationale of the comparison, then
we give, domain after domain, an overview of the
DAL-dependent gradual construction of development
rigor. We highlight their main commonalities and
differences on supporting processes (also called
integral processes), development processes and
verification processes.
Regarding the question of cross-domain comparison
of software DALs, we restrict ourselves to the lowest

(respectively E, SIL0, ASIL A, class 3, SSIL0, 4) and
the highest levels (A, SIL4, ASIL D, class 1, SSIL4, 1).
A forthcoming more comprehensive version of this
work will provide an all DAL inclusive comparison, and
attempt to define some cross-domain equivalences.

2. Comparison rationale

We first compare the probabilistic system safety levels
to which the highest software development assurance
levels are supposed to be compatible with. As
explained in [Baufreton et al, 2010], all the standards
dismissed the notion of probabilistic software failure,
as well as any probabilistic quantification of DAL-
dependent likelihood of residual software fault.
However, all the standards implicitly state that the
various software development assurance levels are
compatible, or consistent, with corresponding
quantified system safety levels.
These system safety levels are highly sensitive to the
physics, to the severity and exposure issues of the
different industrial domains. Because of these great
differences, (see the companion paper "Criticality
categories across safety standards in different
domains" [Blanquart et al., 2012]), it may be the case
that the highest safety objectives of the different
software development assurances are indeed
different, whatever means they define to meet these
objectives. So it is worth comparing their respective
safety objectives before listing and categorising their
numerous requirements.
For each domain we point out which safety assurance
requirements are DAL dependent, and which are not,
grouping the requirements into three categories:
applicable to supporting processes, development
processes or verification processes.
When discussing the possible cross-domain
equivalences or ranking between the highest software
development assurance levels we will put in two
different categories the standards that require external
conformance assessment from that which do not.
External assessment does not necessarily assume
assessment by a regulation authority. Assessment by
peer review within a company is also considered as
"inner external" assessment and valued, though to a
lesser extent than review by authority officials.

https://omnibet.ro/case-pariuri/

3. Aeronautics

3.1. Software safety objectives

DO-178/ED-12 defines five software criticality levels,
also called Development Assurance Levels, from E to
A upward. Consistently with CS 25.1309 and ARP
4761, DAL A aims at developing airborne safety
critical software so that one can assume that system
level catastrophic failure conditions directly or
indirectly caused by software malfunctioning may
occur at most once per billion of flight hours.

3.2. Rationale of gradual software safety
assurance

DO-178/ED-12 is a process-based software
development assurance standard. Through a DAL-
dependent set of activities, quality objectives and
development work products, it strives to ensure that
all the system requirements allocated to a given piece
of software are implemented in the executable code
loaded in a defined equipment, and nothing else (no
dead code, no unintended function).
This is the reason why DO-178/ED-12, like IEC 60880
or EN 50128, ensures a context-dependent property
of software. There is no notion of intrinsically qualified
software, i.e. independently of an upstream system
and a downstream hardware equipment.
However and surprisingly enough, the context-
dependent system safety requirements allocated to
software are not isolated and handled with greater
care in DO-178/ED-12.
And since its foundational principle is to limit
normative guidance to quality objectives and process
activities, in other words to refrain from putting any
constraint on development and verification means, its
DALs have no influence on methods and tools
contrary to IEC 61508, IEC 60880, ISO 26262 and EN
50128.
It is still the case with its new C version, in spite of the
fact that three mean related technical supplements
now complement the core document for Object
Oriented Technologies (OOT), Model Based
Development and Verification (MBDV), and Formal
Methods (FM).
These techniques, especially MBDV and FM, are not
regarded as of superior efficiency so that they should
be applied to the development of high criticality
software. They are regarded as new development or
verification means that may contribute to meet the
quality assurance objectives of the core document,
that were kept unchanged from version B to C.
On one side potential benefit regarding software
safety is credited by the standard to these techniques,
but on the other side they are suspected of error-
prone tooling sophistication and of inspiring
overconfidence in their benefits, especially formal
verification w.r.t. testing.
In the end, none of these techniques are
recommended, even formal methods for DAL A, to the
opposite of EN 50128 and IEC 60880.

Likewise, and contrary to most of the other standards,
DO-178/ED-12 does not contain a DAL-dependent list
of software threats and associated forbidden
programming traits or mandatory analyses. Some
potentially dangerous programming constructs are
highlighted, like interrupts or dynamic memory
allocation. The standard mandates demonstration of
safe usage of these features whenever used.
Applicants forbid them, not the standard, as a mean to
cope with the otherwise insuperable safety
demonstration objectives.
Finally, DALs condition independence requirements
regarding verification activities w.r.t. development
activities.

3.3. DAL-dependent requirements on supporting
processes

DALs have a significant influence on supporting
processes i.e. planning, documentation, configuration
management, relation to Authority etc.
Level E software is not subject to any development
constraint, so it will not be discussed any further.
As defined in section 4 and table A-1 of the core
document [ED12B/DO178B]1, planning is required
nearly to the same extent for levels D to A. The
requirements are exactly the same from C to A. Level
D is relieved of defining the software life-cycle
environment, the development standards, and the
coordination of plan revision.
The purpose of planning is to define the software
production means that will ensure compliance with the
system requirements at DAL-specified confidence
level. In these plans particular attention has to be paid
to the development and verification means of multiple-
version dissimilar software, deactivated code, user-
modifiable code, and parameter data items.
The configuration management process is DAL-
independent but the software lifecycle work products
this unique process applies to are DAL-dependent.
Two categories of Change Control, CC1 and CC2, are
defined for items whose configuration is managed.
CC2 is a lighter version of CC1, i.e. the configuration
management activities required by CC2 are a subset
of that of CC1.
The higher the DAL, the more work products are
subject to configuration management, and the more
often CC1 is required instead of CC2.
Software quality assurance is handled evenly for the
three higher DALs: the plans and standards have to
be defined and applied to the processes, the activity
records have to be generated, the transition criteria
monitored, and a process conformity review
conducted.
Regarding the certification liaison process, the
requirements are the same for all DALs.

1 By the time of publication of this paper ED-12C/DO-
178C is accepted by RTCA and EUROCAE but not yet
published.

3.4. DAL-dependent requirements on the
development process

Originally, DO-178/ED-12 required only the High
Level Requirements and the executable object code
integrated on target computer to be developed. This is
the reason why these objectives are uniformly
required for all the levels.
Then software became larger and programming
evolved towards general purpose languages so that
intermediate specification refinement steps or
development artefacts were introduced between the
HLRs and the executable object code: Low Level
Requirements, software architecture, source code.
Producing these three intermediate work products
became also required, but only for levels C to A.
So the DALs have a great influence on the
development process: light-weight process for E & D
on one side, heavier step-wise refinement process for
C, B, A on the other side (table A-2).
Resorting to model-based development, object
oriented technologies or formal methods, with or
without automatic code generation, has no influence
on this [E,D], [C,B,A] split of the development
processes. These three technologies are regarded as
new means of producing the HLR, LLR, architecture
or source code artefacts. Very few development
assurance objectives were added in the Technical
Supplements (TS) of version C. MBDV TS introduced
three new objectives (MB8-10 in table MB.C-2) that
indeed boil down to a sole one: whatever model is
used for HLR, LLR, or software architecture, the
elements of the model that will not be implemented in
the piece of software must be marked as such.
This new requirement applies to levels D to A for HLR
models, and for architecture models2 as well.
As expected, it applies only from C upward to the LLR
models.

3.5. DAL-dependent requirements on the
verification process

DALs' influence is even greater on the verification
process as it modulates:

- the work products that are to be verified
(tables A-3 to A-6)

- the activities that are to be verified (table A-7)
- the independence of verification teams w.r.t.

development teams (tables A-3 to A-7)
Consistently with the [E,D] vs. [C,B,A] split at
development level, the same split underpins the A-3
to A-6 verification tables: verification of the HLRs
against the allocated system requirements and
verification of the executable object code against the
HLRs are mandatory at all levels but E, whereas
verification of the intermediate work products (LLR,
architecture, source code) and verification of the

2 Though software architecture is not required at level
D. But if done, and done by means of a model, then
extra work is required on this non mandated artefact.

executable object code against the LLRs are
mandated only from C to A.
Verification of verification activities is still called
verification of testing3 in the core document whereas it
applies also to verification by simulation in the MBDV
supplement and to verification by proof techniques in
the FM supplement.
Verification of verification cases, procedures and
results on one side, verification of functional and
structural coverage obtained after requirement-based
verification on the other side, are the main verification
of verification activities. At D level, only verification of
HLR functional coverage is required (A-7.3).
Verification of LLR functional coverage is required
from C upward. The required structural coverage (A-
7.5 to A-7.9) gradually increases from C (statement)
to A (MC/DC).
Consistently with the way new development
technologies were considered on the development
process, very few new quality assurance objectives
were added on the verification process by the three
technical supplements:

- MBDV TS added verification of simulation cases,
procedures and results wherever model
simulation is used (3x3 new objectives),

- OOT TS added verification of local type
consistency and robustness of dynamic memory
allocation (OO.9-10 in table OO.A-7), with
independency for levels A and B.

- FM TS, like MBDV TS, added verification of proof
cases, procedures and results wherever proof
techniques are applied (FM.8-9 in FM.A-3 to A-
6). More significant are the new formalization
correctness (FM-1x) and method
appropriateness (FM-1y) objectives in tables
FM.A-3 to A-6, and even more so the new
structure coverage and property preservation
objectives of table FM.A-7 (FM.5-8 and FM.9)
[LE 2011]. Property preservation and method
appropriateness apply to all the DALs. All the
other new verification objectives are required
only from C upward.

Regarding the rationale of DAL-dependent modulation
of verification independency we have the following:
independence of verification of HLR consistency,
accuracy and compliance with system requirements
are mandated for A and B.
It is also the case for algorithms' accuracy and
compliance at all the refinement steps, from the HLRs
to the executable object code.
Independent verification of instruction and decision
coverage is also required for A and B.
Because A and B are very close, decomposition of a
DAL A system into two independent B-items (sub-

3 In DO-178/ED-12 testing mandates execution on the
target airborne equipment. Execution of the binary
code on virtualized target hardware accounts for
simulation.

system or equipment) is authorized in ARP 4754 (see
[Blanquart et al., 2012]).
Independent verification of MC/DC coverage, and
removal of additional executable code non traceable
to source code are required exclusively for DAL A.
There is no independency requirement from C
downward.

4. Automotive

4.1. Software safety objectives

As explained in [Blanquart et al., 2012], a distinctive
feature of ISO 26262 w.r.t. the five other standards is
its criticality allocation granularity.
In automotive, criticality may be allocated to the safety
requirements. This fine grained criticality allocation
policy at system level entails possibility of DAL mix at
software level, i.e. possibility of DALs defined at
module, class, or procedure level.
However, some directed influence constraints
between the components of the DAL-mix must be
guaranteed and duly justified ([ISO 26262] part 9,
clauses 5 and 6), and like in aerospace nuclear or
railway, the default approach in automotive is to
develop a piece of software at the DAL which fits the
most critical of its allocated safety requirements. It is
especially the case when the properly oriented
dependence condition4, required for a DAL-mix can't
be demonstrated.
Automotive most critical embedded software, ASIL D
software, has to be consistent with a system safety
level quantified by a probability rate of 10-8 per driving
hour.

4.2. Rationale of gradual software safety
assurance

Contrary to DO-178/ED-12 where process objectives
and activities depend on DAL, ISO 26262 part 6 does
not modulate the development assurance
requirements according to ASIL.
ASIL-dependent variability applies to the methods and
tools that are accepted, recommended, or highly
recommended to meet the various objectives of the
unique ASIL-independent development and
verification processes.
In particular, the work products to be supplied for
confirmation measures5 are the same for ASIL A and
ASIL D software. The ASILs modulate the level of
formality recommended for requirement capture and
software verification, they also drive the applicable
coding standards and testing coverage criteria.
Last but not least, ASIL D also enforces a few
product-based design requirements such as
implementation of error detection (part 6 table 4),
error handling (part 6 table 5, and table C.1 for

4 A DAL X item may depend from a DAL Y item only if
X ≤ Y.
5 Functional safety related quality assurance
measures (review, audit, assessment).

calibration data error detection), and partitioning
mechanisms (part 6 clause 7.4.1 and table 5).
Partitioning is especially important as a means of
substantiating absence of interference between ASIL-
heterogeneous software elements.

4.3. ASIL-dependent requirements on supporting
processes

They are addressed by ISO 26262 part 8 (8-7, 8-8, 8-
10).
Planning includes:

- documentation management plan
- configuration and change management plans
- software integration and verification plans,
- unit and integration testing plans,
- testing plan,
- safety requirement verification plan,
- tool usage plans,
- component qualification plans.

Regarding documentation, there is no ASIL-
dependent list of documents or work products to be
supplied.
Configuration management (part 8 chapter 7) can be
applied according to ISO/TS 16949, ISO 10007 and
ISO 12207. There are specific, but ASIL-independent,
requirements for configuration and calibration data.

4.4. ASIL-dependent requirements on the
development process

For safety requirements specification, an ASIL-
dependent appropriate combination of natural
language, semi-formal, or formal notation is required
(part 6 table 2). For ASIL C and D, a semi-formal
notation is highly recommended. Contrary to railway,
formal specification is never highly recommended,
even for ASIL D. For the lower ASILs, informal
notation can be sufficient to comply with the standard.
In ISO 26262, the DO-178/ED-12 notion of derived
requirement, i.e. a requirement traceable to a design
choice but not traceable to a system requirement,
does not exist.
Software architectural design is peculiar in ISO 26262
as the standard applies to the whole piece of
software, contrary to all of its other chapters that only
apply to its safety-related aspects (part 6 chapter 7).
The notation and the architectural principles regarding
interface, module size, hierarchical decomposition,
control and data coupling, interrupt handing,
scheduling etc. are ASIL dependent (tables 2 and 3).
ASIL D software architectural requirements must be
verifiable by simulation of its dynamic part (part 6
table 6). Formal notation is recommended, whereas
semi-formal notation is highly recommended.
Software modelling and coding guidelines are also
ASIL-dependent (part 6 table 1).

4.5. ASIL-dependent requirements on the
verification process

The requirement verification methods are ASIL-
dependent (part 8, table 2). From ASIL C upward,
semi-formal verification of the requirements is highly

recommended. Walk-through is enough for ASIL A,
but inspection is highly recommended from ASIL B to
D. Formal verification of requirements is never highly
recommended.
Traceability is explicitly required along the whole
hierarchical safety requirement structure and to the
specification of verification (part 8, figure 2).

Formality in source code verification methods grows
with ASIL, but formal verification of source code is
never highly recommended.

Like in DO-178/ED-12, requirement based testing is
highly recommended for all the levels, and detecting
the unintended functions is a verification objective.

For unit testing, structural coverage is required.
Statement coverage for ASIL A and B, branch
coverage for ASIL B to D. MC/DC is highly
recommended only for ASIL D (part 6 table 12).

For integration testing, structural coverage is highly
recommended only for ASIL C and D (function or call
coverage, part 6 table 15).

Fault injection tests, resource usage tests, and model-
code back-to-back tests (when applicable) are highly
recommended for ASIL D.

5. Industry Automation

By automation we understand the continuous process
industries such as nuclear facilities (beside energy
production), non nuclear energy, metals, cement, oil
and gas and chemicals, the manufacturing industries
with the exception of automotive and the batch
production industries such as pharmaceuticals and
food and beverage. These industries are relevant of
IEC61511 for the continuous and batch processes,
and of IEC62061 for manufacturing industries. Both
standards are derivates of IEC61508 and, as they are
not self supporting, refer to IEC61508.

These three standards address only the electric,
electronic, programmable electronic systems under
the concept of functional safety, that is systems
distinct from the controlled equipment (plants,
machines, and processing lines) contributing to risk
reduction.

The standards are performance oriented. This means
that, as for the other industries, the functions
contributing to risk reduction are classified in 4 levels
(SIL) according to the impact of a failure on safety.
The requirements are thus increasingly stringent with
the SIL number.

The central concept of these standards is to achieve
the targeted safety integrity and performance by
putting requirements in different fields encompassing:

- project management,
- quality assurance,
- hardware design,
- architecture et software development.

The standards assume that there are two types of
failures. The failures that are introduced before the
commissioning of the systems that are only
systematic failures, and the failures occurring after
system commissioning and that can be either
systematic or random. The standard thus addresses:

- incorrect specifications of the system,
hardware or software;

- omissions in the safety requirements
specification;

- random hardware failure mechanisms;
- systematic hardware failure mechanisms;
- software errors;
- common cause failures;
- human error;
- environmental influences;

Part 3 (IEC 61508-3) is dedicated to software.

5.1. Software safety objectives
When software is involved in a safety related E/E/PE
system, the standards put requirements on its
robustness and its integrity concerning systematic
failures. The safety objectives of a given safety
related function are defined during the safety
requirements specification phase in terms of safety
functional and integrity requirements at the level of the
safety related function itself. They are then refined in
hardware and in software safety requirements.

Appendix B of part 2 acknowledges that exhaustive
detection of systematic software failures introduced
during development, as well as quantification of the
efficiency of the software fault avoidance policy are
intractable. It states that performance is more
achieved by means of development environment,
techniques and methods, rather than by quantification
attempts. Objectives and recommended means are
thus set for properties such as:

- Completeness with respect to the safety
needs;

- Correctness with respect to the safety needs;
- Freedom from intrinsic specification faults,

including freedom from ambiguity;
- Understandability of safety requirements;
- Freedom from adverse interference of non-

safety functions with the safety needs;
- Capability of providing a basis for verification

and validation.
However, and consistently with the aforementioned
intractability statement of prior process efficiency
quantification, the informative appendix D of Part 7
presents a statistical method to estimate posterior
safety integrity levels, especially when importing
software COTS.

5.2. Rationale of gradual construction of software
safety

According to the targeted SIL level, IEC 61508
requires for each lifecycle phase, the selection and
application of methods and techniques aiming to
provide a suitable context to achieve the expected
performance level.

The link between the expected emerging software
properties and the applied techniques and methods is
(qualitatively) described in the informative part 7,
appendix C.

5.3. SIL-dependent requirements on supporting,
development and verification processes

Ten lifecycle phases or activities are covered by the
standard:

- specification,
- architecture design,
- supporting tools,
- design,
- tests and software integration,
- software/hardware integration,
- modification
- verification, validation,
- safety evaluation.

The standard defines indirectly 48 possible emerging
properties for the software. The crossing of the 10
lifecycle phases with the relevant expected properties
per phase produces 73 requirements on emerging
properties.
The link between the normative methods and
techniques and the achievement of the expected
properties is detailed in the informative appendix C of
part 7. The standard recognises that the achievement
of a property is obtained through a combination of
techniques and methods and with their application
with the proper level of rigour, indirectly driven by the
targeted SIL number.
Roughly one hundred different detailed techniques
and methods are required; ranging from formal proof
to dynamic addressing avoidance. The techniques
and methods occur in 184 distinct requirements, 87 of
them being without any alternative (cf. the 18 tables of
the normative appendices A and B of part 3).
Screening the Highly Recommended (HR) methods in
these tables one notices that:

- most of the methods related to supporting
process activities apply uniformly to the 4
SILs,

- most of the specification, programming,
testing or tooling related means either apply
to SIL1 and SIL2, or to SIL3 and SIL4. A few
ones apply to SIL1, SIL2, SIL3. Static
analysis is HR from SIL2 to SIL4.

- the very few HR techniques exclusively at SIL
4 are formal specification, formal proof, and
probabilistic testing.

As for SIL-modulated verification independency, either
at person, department, or institution level, it happens
to be used for functional safety evaluation (part 1, §
8.2.12 to 14).

5.4. Conclusion

There is little difference between SIL 3 and SIL 4.
There is a large difference between SIL 2 and SIL 3.
These two facts are acknowledged by the railway
industry. 96 % of SIL 4 prescriptions are necessary for
lower SILs. From a project management point view, if

one is targeting SIL 3, it is probably simpler and more
effective from a cost point of view to realise the whole
project at SIL3 level. This is acknowledged by IEC
61511 for continuous process industry, with the
penalty of the cost of methods and techniques
frequently oversized.

6. Nuclear

IEC 61226 defines how to allocate the severity
categories A, B, C to the safety-related functions of a
nuclear plant, and then IEC 61513 defines, depending
on the system architecture, how to allocate its DAL,
called class, to each item. There are three levels:
class 1 to class 3, mapped to the A, B, C criticality
levels.
The guidance for class 2 and class 3 software
development is stated in IEC 62138, and that of class
1 in IEC 60880. Hence understanding the increment
of rigor enforced for class 1 compared to class 2
needs to sort out which requirements are asserted in
IEC 60880 while not in IEC 62138.

6.1. Software safety objectives

Like with any other software safety standard there is a
postulated "compatibility" principle of classes with
probabilistic analysis at system level. A class 1
software item, possibly flawed by some residual
systematic failures, is assumed to be consistent with a
10-4 failure on demand reliability.

6.2. Rationale of gradual construction of software
safety

The higher the class, the longer the list of issues to be
addressed in the specification, the more safety
mechanisms to be implemented, the greater formality
in the development and the higher coverage of
software verification.
IEC 60880 for class 1 and IEC 62138 for classes 2
and 3 enforce processes based on the requirements
of the system standard IEC 61513. These processes
are similar (based on the V-cycle) but not identical
because additional activities and even teams are
required for the highest classes. Class-dependent
variability also affects the content of the specification,
of the implementation, and of the development means
as well as the extent of the documentation and
verification.

6.3. Class-dependent requirements on supporting
processes

There is no significant influence of classes on the
principles of the supporting processes. Let us mention
briefly configuration management and documentation.
Configuration management must be performed
according to documented provisions. Configuration
management must be applied in particular to the
items related to the correctness of software, to the
documents subject to verification, to the components
needed to build the executable code and to the
software tools.

Whatever the class, the Software Requirements
Specification, the Design Specification, the
Verification Plan, the Validation Plan, the results of
the verification actions and all the items related to
software correctness must be documented.
Anyway, when going from class 3 to class 1, much
more aspects are required to be documented,
justified, verified and placed under configuration
management. Also, the need for an independent
verification team in class 1 induces differences in
communication and reporting means, and therefore in
the supporting processes.
Thus, although similar in principle, supporting
processes are different in practice across classes.

6.4. Class-dependent requirements on the
development processes

Regarding software specification, class 3 requires it to
conform to the allotted system requirements in a
verifiable way, and to address a list of issues: the
interfaces, the functions, the behavioural modes,
including that in error or detected failure cases, etc.
Class 2 adds low complexity constraints and quality
objectives (clarity, precision etc.) to be enforced by
authoring rules and standards. Class 1 still adds a
complementary list of technical issues to be
addressed by the specification like self-supervision,
the plant's special operating conditions, hardware
software integration constraints, etc.
As far as software architecture, design, coding and
integration are concerned, class 3 mainly requires the
overall organisation and behaviour to be documented,
the safety related requirements to be met in all
specified conditions, and to apply documented
authoring rules. Class 2 adds a list of technical items
to be documented, and verifiable rules to be applied,
especially that aiming at early detection and
containment of software errors. Class 1 adds
supplementary and mandatory design rules, in
particular regarding modularity and verifiable
determinism. It also requires documenting all the
dependencies between module verification and
verification of the integrated software.

6.5. Class-dependent requirements on the
verification processes

Class 3 and class 2 require that at least specification
and design be verified by competent and independent
persons (at activity level). Class 1 requires an
independent verification team placed under
independent management and verification of each
development phase with respect to its inputs. Class 1
requires the techniques, tools and pass criteria to be
documented. Adequacy of the architecture to the
safety requirements must be substantiated.
IEC 62138 accepts class 3 and class 2 source code to
be tested on the host hardware, or in a software
engineering environment. Class 3 and class 2
mandate documented verification, but class 2 adds
requirements on the verification of the applicable rules
and standards, on the test sufficiency and on the
justification of non conformances. Class 1 requires

analysis in addition to testing, detailed documentation
and justification of the test cases, procedures, results
and coverage criteria. Module verification must show
that each module performs its intended functions and
does not perform unintended functions.
Finally, object code verification is performed during
system integration and validation in the target
Instrumentation & Control environment. Validation
must demonstrate that the software complies with its
functional and interface specification derived from the
system needs. Some requirements are stated only at
class 2 and class 1 levels. Class 2 requires
demonstration that, in the target I&C system, the
integrated software conforms to each functional,
performance and interface statement of the software
specification, and contributes as designed to the
satisfaction of the system requirements. Class 1 adds
management independency of the validation team,
and comprehensive coverage of the signal ranges, of
the ranges of calculated parameters, of the voting and
logic combinations.
For classes 3 and 2, this validation testing (i.e. final
testing of the integrated system) may be performed on
a hardware platform identical to the one of the actual
final system if adequate justification is provided. For
class 1, validation testing must be performed on the
actual final system.

7. Railway

Railway systems integrate more and more
programmable numerical equipment including
consequently software. Some of these systems are
subjected to RAMS requirements (especially safety
requirements). It is in particular the case of on-board
control/command systems known as “safety critical”
whose failures can cause serious damage to people
or to goods, as well as systems with very high
availability targets (telecommunications networks in
particular).
The software integrated in such systems
consequently also undergoes RAMS constraints.
There are several techniques making it possible, on
one hand, to avoid or eliminate the development faults
and, and on the other hand to make the execution of
the software applications safe in case of occurrence
of physical or environmental faults. These techniques
include in particular tests, simulation, proofs, and
design of safe and reliable architectures including the
RAMS analyses (Failure Modes Effects and Criticality
Analysis, Software Error Effects Analyses, Fault
trees…).
The standard for the railway domain is decomposed in
three parts:
• CENELEC EN 50126 establishes a method for the

specification and demonstration of reliability,
availability, maintainability and safety (RAMS), for
railway domain.

• CENELEC EN 50129 provides general guidance to
demonstrate the safety of electronic systems and

to construct the safety case for signalling railway
application.

• CENELEC EN 50128 provides requirements for
the software used in signaling railway application.

7.1. Software safety objectives

The standard CENELEC EN 50128 is particularly
dedicated to the software development for the railway
field. Notice that a new version of this standard was
published in October 2011. This version is stricter and
introduces some enhancement in quality
management, tool qualification and software
maintenance management to address deployment.
The Safety Integrity Level (SIL) becomes SSIL
(Software SIL) with levels from 0 (not critical) to 4
(critical), and for each SSIL, the specific development
activities (including verification and validation) are
prescribed.
For a component of a given SSIL, EN 50128
describes the processes, methods and tools to be
implemented during the development. It is about an
obligation of means, which is added to the obligations
of quantitative and/or qualitative results.
Software certification demonstrates the reliability, or
safety of software systems in such a way that an
independent authority can check it with sufficient trust
in the techniques and tools used in the certification
process itself. It can be built on existing validation and
verification techniques but introduces the notion of
explicit software certificates, which contain all the
information necessary for an independent assessment
of the demonstrated properties. Software certificates
support a product-oriented assurance approach,
combining different techniques and forms of evidence
(e.g., fault trees, safety cases, formal proofs,...) and
linking them to the details of the underlying software.

7.2. Rationale of gradual construction of software
safety

Within the framework of critical systems (SIL 3 and 4),
the design principles to ensure safety generally go in
opposition to system availability. This is the
consequence of a “fail stop” design principle aiming to
stop the system in case of failure and therefore
ensuring a “fail safe” behaviour.

As example, in the railway field the plausible failures
will generally have the effect of “stopping the train(s)”
which has a strong impact on the system availability.
This feature, characteristic of applications (like ground
transportation and energy production) having a “rest
state” identified as safe and reachable by (relatively)
simple means and (relatively: 3km and 1mn30s to
stop a high-speed train at 300km/h) fast, is not shared
in other fields (like aeronautic) where some vital
functions must remain available in all circumstances.

As to software, only subject to design faults because
of it’s immaterial nature, preventing and eliminating
these faults by the various prescribed methods for
high SSIL levels (SSIL 3 or SSIL 4), also contributes

to improve its reliability level by a better control of it’s
complexity and quality.

For the non-critical (SSIL 0) and not much critical
(SSIL 1 and SSIL 2) applications, the design process
of software is on the other hand less constrained (as
well for the programming language and tools as for
Verification and Validation process) inducing a less
quality of software, often causing unavailability
scenarios. For such applications, the use of
“Commercial Off The Shelf” (COTS) components is
allowed and therefore frequent. The control of the
quality of these COTS components, which has
consequently a direct impact on system availability,
remains consequently a crucial question, in a context
of increasing search for profitability.

7.3. SSIL-dependent requirements on integral
processes

The CENELEC EN 50128 requests some plans to
manage software safety:

- Software assurance quality plan,
- Configuration and change management plan,
- Verification and validation plan,
- Unit testing plan,
- Integration testing plan,
- Overall testing plan,
- Tool qualification plans.

Configuration management can be applied according
to ISO 9001:2008, ISO 9000-3.

7.4. SSIL-dependent requirements on the
development process

Phases, inputs, outputs, transition criteria are defined
by the standard.
A list of documents is defined as well as a list of
milestones. Some definite analyses are mandated
(e.g. Software Error Effect Analysis for SSIL3-4).

Regarding documentation, the SSIL have an impact
on the list of documents (for example, for SSIL0 32
documents are required, for SSIL1 to SSIL4 46
documents are required).

The other work products to be supplied are also
conditioned by the software SIL:

- for SSIL0, the ISO 9001:2008 defines the set of
activities,

- for SSIL3-4, all the activities are HR, so that the
development cost is roughly twice as much as for
SSIL1-2.

7.5. SSIL-dependent requirements on the
verification process

Verification includes software verification but does not
include the verification of conformity to the standard.
The conformity to the standard is defined in a specific
section of the standard and called “software
assessment”. The software assessment is a specific
activity realized by a person independent from the
project that examines the process and all the parts of
the product (source code, tests scenarios and results,

documentations, competencies, organization, etc.).
The assessor can request some activities (specific
tests, safety analysis, etc.).
Traceability is explicitly required from the specification
to the code (vertical traceability) and for each phase
from the development documentation to the test
documents (horizontal traceability).

Formality in source code verification methods grows
with SSIL and the formal verification of source code is
highly recommended.

For unit testing, structural coverage is required.
Statement coverage for SSIL 0, Branch coverage for
SSIL 1-2, Path coverage for SSIL 3-4. In the new
version of the standard, MCDC is highly
recommended only for SSIL 3-4.

For integration testing, interface coverage is highly
recommended for all SSILs.
Like DO-178/ED12 and ECSS-Q-ST-80C, EN 50128
requires detection and removal of unreachable code.
The standard recommends using some of the
available quality models and associated metrics (e.g.
size of code; complexity of design and code, test
coverage, number of failures, etc.)

8. Space

Compared to the other standards ECSS-Q-ST-80C
has two distinctive characteristics:

1. it pays particular attention to the customer-
supplier relationship,

2. on many safety assurance issues it only
requires them to be dealt with by the
customer and the supplier, without any
constraint on the way it is done.

To some extent ECSS-Q-ST-80C is some sort of
"meta" software safety assurance standard (or
framework), as it compels the customer and the
supplier to define their own project specific software
safety assurance programme. The standard requires
only the list of topics to be addressed in their
agreement.
This list is DAL-dependent (table D-2 appendix D), but
weakly dependent.
The list of mandatory topics, called clauses in ECSS-
Q-ST-80C terminology, is exactly the same for levels
A and B, and nearly identical to that of C, except two
clauses peculiar to safety critical software.
This weak dependency is due to the "meta-level"
nature of ECSS-Q-ST-80C: it defines what is to be
defined, not what will be done on the project.
Whatever the criticality of the software to be
developed, the development assurance issues to be
discussed are the same, except for the very few ones
that are meaningful only if the software is of high
criticality.
This introduction to ECSS-Q-ST-80C is not
completely fair. Some of its clauses are precise
process-based or product-based development
constraints so that the content of the customer-

supplier agreement on these issues is much more
constrained by the standard than those left open by its
overall "meta-level" flavour.

8.1. Software safety objectives

Table 6-1 of ECSS-Q-ST-40 defines the mapping of
the 4 severity levels (failures propagation, loss of
mission, etc.) to the 4 DALs (A to D for software,
ECSS-Q-ST-80C) downward. Some corresponding
probability targets are explicitly mentioned in the
standard, but their values are not defined by the
standard. They are set on a project by project basis.
Hence in the space domain the postulated and
tabulated "consistency principle" between software
development assurance levels and probabilistic
system safety levels applies differently from
aeronautics or railway. DAL A is consistent with a
variable probability level whereas DAL A or SSIL 4 is
consistent with a constant one.

8.2. Rationale of gradual construction of software
safety

As explained previously, the DALs of ECSS-Q-ST-
80C have little explicit influence in the standard, but of
course they are instrumental in what is agreed on all
the clauses by the customer and the supplier.
ECSS-Q-ST-80C is both a process-based and
product- based framework. It resorts to defining
quality objectives, development activities, constraints
on applicable methods, or mechanisms to be
implemented in the software (e.g. non corruption
check and check sum in 6.2.4.8 to 10).
Like DO-178/ED-12 it does not singularize the safety
requirements among all the software requirements.

8.3. DAL-dependent requirements on supporting
processes

Planning is extensive, like with all the other standards:
- product assurance plan,
- development and verification plan,
- configuration management plan,
- test plan and acceptance test plan

Change control, configuration management,
documentation management are obviously
addressed.

8.4. DAL-dependent requirements on the
development process

Phases, inputs, outputs, transition criteria have to be
defined by the customer and the supplier, they are not
defined by the standard.
A list of documents is defined as well as a list of
milestones. Some definite analyses are mandated
(e.g., Hardware Software Integration Analysis).
Methods and tools to be used for all activities of the
development life-cycle are to be identified by the
supplier and agreed by the customer.
Quality requirements, including safety and
dependability, must be defined in quantitative terms.

A distinction is made between manual and automatic
coding. If code generators are used some dedicated
technical issues are to be addressed (6.2.8: testing,
tool qualification aspects, V&V documentation)

8.5. DAL-dependent requirements on the
verification process

Verification includes software verification and
verification of conformity of the process to the
standard (6.2.6.7).
The few requirements that are only applicable to DAL
1 and 2 are verification requirements:

- Validation tests must be re-executed on non
instrumented code (6.2.3.8),

- Independent software verification must be
performed by a third party and be a combination of
reviews, inspections, analyses, simulations, testing
and auditing (6.2.6.13),

- Independent software validation must be
performed by a third party (6.3.5.28).

But on a structural coverage of testing one reads
"based on the criticality of the software, test coverage
goals for each testing level shall be agreed between
the customer and the supplier and their achievement
monitored by metrics" (6.5.3.2).
Like DO-178/ED-12, ECSS-Q-ST-80C requires
detection and removal of unreachable code. In
addition it requires analysing the need of post removal
re-verification and re-validation (6.2.3.6, 6.2.6.5).
The standard recommends using some of the
available quality models and associated metrics (e.g.
size of code; complexity of design and code; fault
density and failure intensity, test coverage, number of
failures, estimated and verified numerical accuracy,
etc.).

9. Synthesis

When comparing the six standards, one notices that
their respective DALs condition:

- the quality assurance objectives,
- the processes' activities,
- the processes' work products,
- the development means (methods, tools,

rules, standards),
- the independence of some verification

activities (software or process' conformity to
the standard),

- and last but not least, the content of the
software product itself (defensive
programming, error detection mechanisms
etc.).

Hence the DALs influence software safety
construction on six different dimensions.
There are significant differences between the
industrial domains, and in some cases even opposite
choices: DO-178/ED-12 enforces a DAL-dependent
process supported by DAL-independent means (since
there is no mean recommendation), whereas IEC

61508, ISO 26262, CENELEC EN 50128 and IEC
62136 & 60880 enforce DAL-independent processes
supported by DAL-dependent means.
Space is a bit particular as it is the only standard that
allows client and supplier to agree on some process
and means on a project by project basis.
Among the four mean-prescriptive standards, a
tentative synthesis of the DAL-modulation of the
development and verification means is the following:

 Auto. Auta Nucl Rlw

Design & programming rules X X X X

Requirement and architecture
notations

X X X X

Methods of verification by analysis X X X X

Types and methods of testing X X X X

Testing environments X X X X

They all modulate the authoring standards, the design
rules and the verification means.
They also all resort to verification independence, but
on a varying perimeter: process conformity only, or
process conformity and software verification activities.

10. Conclusion

Thus we observe many significant cross-domain
differences in the manner of minimizing the risk of
residual software development or verification errors.
The discrepancies between the six standards are not
a matter of degree: more or less planning, more or
less rules and standards, more or less structural
coverage or verification independency etc.
Some major discrepancies are a matter of principles:
definition of requirements vs. requirement of
definitions, modulation of activities vs. modulation of
means.
Some positioning of the standards with respect to the
six dimensions is possible:

DAL-dependency

None Medium High

Product/content Aero Automation
Automotive,

Space
Railway

Nuclear

Process/
Quality objectives

 Automation
Automotive,

Railway

Aero
Nuclear
Space*

Process/ activities Automation
Automotive,

Railway

Nuclear Aero

Space*

Process/ means Aero Nuclear
Space*

Automation
Automotive,

Railway

Process/
Independence/ V&V

 Aero
Automation
Automotive

Nuclear

Space
Railway

Process/
Independence/

Conformity

 Automation
Automotive

Nuclear

Aero
Space

Railway

The * means an indirect DAL-dependency, i.e. not
defined by the standard but practiced within customer-
supplier agreements.

Because of the these great foundational differences
between the aeronautic standard, the space standard,
the nuclear standards, and the three other ones
considered as a reasonably homogeneous group,
comparing the six highest DALs to one another seems
hopeless. The question of cross-domain equivalences
or ranking formulated in the introduction may be given
an answer if one restricts its scope to the group of
standards that derive from, or at least were influenced
by, IEC 61508. Even so, it will remain difficult, but will
be attempted in further work of our CG2E group.

Another approach, that would encompass the six
domains, would be to rely on accident statistics. Since
aeronautics, nuclear, railway and space have now
been experiencing their standards over 20 to 30
years, some experimental confirmation, or
invalidation, of their efficiency could be looked for in
the respective safety agencies' fatal accidents
statistics. Then some cross-domain comparison of
these statistical data could be attempted. Thus return
on experience, provided some sound statistical and
probabilistic arguments are found, might show that the
different rigor enforcement policies are indeed
efficient, and that they would lead in some definite
cases to admittedly comparable safety levels. Such
an approach will also be attempted in future work.

11. Acknowledgement

The authors wish to thank Sébastien Bardoz
(Dassault Systèmes), Jean-Louis Camus (Esterel
Technologies) and Cyril Comar (AdaCore) for their
valuable contributions to the working group.

12. References
[Baufreton et al., 2010] P. Baufreton, JP. Blanquart, JL.

Boulanger, H. Delseny, JC. Derrien, J. Gassino, G. Ladier,
E. Ledinot, M. Leeman, J. Machrouh, P. Quéré, B. Ricque,
“Multi-domain comparison of safety standards”, ERTS-
2010, 19-21 May 2010, Toulouse, France.

[Blanquart et al., 2012] JP. Blanquart, JM. Astruc, P.
Baufreton, JL. Boulanger, H. Delseny, J. Gassino, G.
Ladier, E. Ledinot, M. Leeman, J. Machrouh, P. Quéré, B.
Ricque, “Criticality categories across safety standards in
different domains”, ERTS-2012, 1-3 February 2012,
Toulouse, France.

[Ledinot and Pariente 2011] E. Ledinot, D. Pariente "Formal
methods and compliance to the DO-178C/ED-12C standard
in aeronautics" in Static Analysis of Software, J.L Boulanger
Ed. Wiley 2011.

[Machrouh et al., 2012] J. Machrouh, JP. Blanquart, P.
Baufreton, JL. Boulanger, H. Delseny, J. Gassino, G.
Ladier, E. Ledinot, M. Leeman, JM. Astruc, P. Quéré, B.
Ricque, “Cross domain comparison of System Assurance”,
ERTS-2012, 1-3 February 2012, Toulouse, France.

[ECSS-Q30] “Space product assurance – Dependability”,
European Cooperation for Space Standardisation, ECSS-
Q-ST-30C, 6/3/2009.

[ECSS-Q40] “Space product assurance – Safety”, European
Cooperation for Space Standardisation, ECSS-Q-ST-40C,
6/3/2009.

[ECSS-Q80] “Space product assurance – Software product
assurance”, European Cooperation for Space
Standardisation, ECSS-Q-ST-80C, 6/32009.

[ED12B/DO178B] “Software considerations in airborne systems
and equipment certification”, EUROCAE ED-12 and RTCA
DO-178, issue B, 1/12/1992.

[ED79A/ARP4754A] “Guidelines for Development of Civil
Aircraft and Systems”, EUROCAE ED-79A and SAE ARP
4754A, 21/12/2010.

[ED80/DO254] “Design Assurance Guidance for Airborne
Electronic Hardware”, EUROCAE ED-80 and RTCA DO-
254, 4/2000.

[ED135/ARP4761] “Guidelines and methods for conducting the
safety assessment process on civil airborne systems and
equipment”, EUROCAE ED135 and SAE ARP 4761,
12/1996.

[EN 50126] “Railway applications – The specification and
demonstration of reliability, availability, maintainability and
safety (RAMS)”, CENELEC, EN 50126, 1999 AMD 16956,
28/2/2007

[EN 50128] “Railway applications – Communications,
signalling and processing systems – Software for railway
control and protection systems”, CENELEC, EN
50128:2001, 15/5/2001

[EN 50129] “Railway applications – Communications, signalling and
processing systems – Safety related electronic systems for
signalling”, CENELEC, EN 50129:2003, 7/5/2003

[IEC 60880] “Nuclear power plants – Instrumentation and
control systems important to safety – Software aspects for
computer-based systems performing category A functions”,
IEC 60880, edition 2.0, 2006-05.

[IEC 61226] “Nuclear power plants – Instrumentation and
control important to safety – Classification of
instrumentation and control functions”, edition 3.0, 2009-07.

[IEC 61508] “Functional safety of electrical/electronic/
programmable electronic safety-related systems
IEC 61508 Parts 1-7, Edition 2.0, 4/2010.

[IEC 61511] “Functional safety – Safety instrumented
systems for the process industry sector.
IEC 61511 Parts 1-3, edition 1.0, 3/2003

[IEC 61513] “Nuclear power plants – Instrumentation and
control for systems important to safety – General
requirements for systems”, edition 1.0, 22/3/2001.

[ISO 26262 “Road vehicles – Functional safety”
ISO 26262 Parts 1-9, first edition, 2011-11-15
ISO/FDIS 26262 Part 10, 2011-07-20

13. Glossary

ARP Aerospace Recommended Practice
ASIL Automotive Safety Integrity Level
CC Change Control
CENELEC European Committee for Electrotechnical Standardisation
CG2E Club des Grandes Entreprises de l’Embarqué
COTS Commercial Off-The-Shelf (component)
DAL Development Assurance Level
E/E (/PE) Electrical/Electronic (/Programmable Electronic)
ECSS European Cooperation for Space Standardisation
EUROCAE European Organisation for Civil Aviation Equipment
FM Formal Methods
HLR High Level Requirement
I&C Instrumentation and Control
IEC International Electrotechnical Commission
ISO International Organisation for Standardisation
LLR Low Level Requirement
MBDV Model Based Development and Verification
MCDC Multiple Condition Decision Coverage
OOT Object Oriented Technologies
RTCA Radio Technical Committee for Aeronautics
SAE Society of Automotive Engineers
SIL Safety Integrity Level
SSIL Software Safety Integrity Level
TS Technical Supplement

