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Abstract: 
This paper compares the influence of Development 
Assurance Levels (DALs) on the prescribed 
objectives, activities, methods and tools of six 
different software development assurance standards, 
indeed that of civil aviation, automotive, space, 
process automation, nuclear and railway. 
Through an inventory of their respective requirements, 
we attempt to compare the software safety levels 
ensured by each standard for its lowest and highest 
DALs.  
We first explain the rationale of the comparison, i.e on 
what basis we compare the securing effects of the 
various process-based or product-based requirements 
issued by the six software development assurance 
standards. Then we review the DAL-dependent 
variability of each standard and finally outline some 
tentative cross-domain equivalence classes or 
ranking. 
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1. Introduction

We present an analysis of the following software 
safety standards: aeronautics' DO-178/ED-12, 
automation's IEC 61508, automotive's ISO 26262, 
nuclear's IEC 60880, railway's EN 50128 and space's 
ECSS-Q-ST-80C, paying particular attention to the 
way Development Assurance Levels drive the 
increase of prescribed objectives, activities, methods 
or safety mechanisms to be implemented. 
We then attempt to answer the following questions: 
are these standards comparable with respect to the 
software safety levels they claim to ensure? Does the 
DAL-dependent progressive construction of software 
safety rely on the same principles in the various 
industrial omnibet domains? 
We first explain the rationale of the comparison, then 
we give, domain after domain, an overview of the 
DAL-dependent gradual construction of development 
rigor. We highlight their main commonalities and 
differences on supporting processes (also called 
integral processes), development processes and 
verification processes. 
Regarding the question of cross-domain comparison 
of software DALs, we restrict ourselves to the lowest 

(respectively E, SIL0, ASIL A, class 3, SSIL0, 4) and 
the highest levels (A, SIL4, ASIL D, class 1, SSIL4, 1). 
A forthcoming more comprehensive version of this 
work will provide an all DAL inclusive comparison, and 
attempt to define some cross-domain equivalences. 

2. Comparison rationale

We first compare the probabilistic system safety levels 
to which the highest software development assurance 
levels are supposed to be compatible with. As 
explained in [Baufreton et al, 2010], all the standards 
dismissed the notion of probabilistic software failure, 
as well as any probabilistic quantification of DAL-
dependent likelihood of residual software fault. 
However, all the standards implicitly state that the 
various software development assurance levels are 
compatible, or consistent, with corresponding 
quantified system safety levels.  
These system safety levels are highly sensitive to the 
physics, to the severity and exposure issues of the 
different industrial domains. Because of these great 
differences, (see the companion paper "Criticality 
categories across safety standards in different 
domains" [Blanquart et al., 2012]), it may be the case 
that the highest safety objectives of the different 
software development assurances are indeed 
different, whatever means they define to meet these 
objectives. So it is worth comparing their respective 
safety objectives before listing and categorising their 
numerous requirements. 
For each domain we point out which safety assurance 
requirements are DAL dependent, and which are not, 
grouping the requirements into three categories: 
applicable to supporting processes, development 
processes or verification processes.  
When discussing the possible cross-domain 
equivalences or ranking between the highest software 
development assurance levels we will put in two 
different categories the standards that require external 
conformance assessment from that which do not. 
External assessment does not necessarily assume 
assessment by a regulation authority. Assessment by 
peer review within a company is also considered as 
"inner external" assessment and valued, though to a 
lesser extent than review by authority officials. 

https://omnibet.ro/case-pariuri/


3. Aeronautics 

3.1. Software safety objectives 

DO-178/ED-12 defines five software criticality levels, 
also called Development Assurance Levels, from E to 
A upward. Consistently with CS 25.1309 and ARP 
4761, DAL A aims at developing airborne safety 
critical software so that one can assume that system 
level catastrophic failure conditions directly or 
indirectly caused by software malfunctioning may 
occur at most once per billion of flight hours. 

3.2. Rationale of gradual software safety 
assurance 

DO-178/ED-12 is a process-based software 
development assurance standard. Through a DAL-
dependent set of activities, quality objectives and 
development work products, it strives to ensure that 
all the system requirements allocated to a given piece 
of software are implemented in the executable code 
loaded in a defined equipment, and nothing else (no 
dead code, no unintended function). 
This is the reason why DO-178/ED-12, like IEC 60880 
or EN 50128, ensures a context-dependent property 
of software. There is no notion of intrinsically qualified 
software, i.e. independently of an upstream system 
and a downstream hardware equipment.  
However and surprisingly enough, the context-
dependent system safety requirements allocated to 
software are not isolated and handled with greater 
care in DO-178/ED-12. 
And since its foundational principle is to limit 
normative guidance to quality objectives and process 
activities, in other words to refrain from putting any 
constraint on development and verification means, its 
DALs have no influence on methods and tools 
contrary to IEC 61508, IEC 60880, ISO 26262 and EN 
50128. 
It is still the case with its new C version, in spite of the 
fact that three mean related technical supplements 
now complement the core document for Object 
Oriented Technologies (OOT), Model Based 
Development and Verification (MBDV), and Formal 
Methods (FM).  
These techniques, especially MBDV and FM, are not 
regarded as of superior efficiency so that they should 
be applied to the development of high criticality 
software. They are regarded as new development or 
verification means that may contribute to meet the 
quality assurance objectives of the core document, 
that were kept unchanged from version B to C.  
On one side potential benefit regarding software 
safety is credited by the standard to these techniques, 
but on the other side they are suspected of error-
prone tooling sophistication and of inspiring 
overconfidence in their benefits, especially formal 
verification w.r.t. testing.  
In the end, none of these techniques are 
recommended, even formal methods for DAL A, to the 
opposite of EN 50128 and IEC 60880. 

Likewise, and contrary to most of the other standards, 
DO-178/ED-12 does not contain a DAL-dependent list 
of software threats and associated forbidden 
programming traits or mandatory analyses. Some 
potentially dangerous programming constructs are 
highlighted, like interrupts or dynamic memory 
allocation. The standard mandates demonstration of 
safe usage of these features whenever used. 
Applicants forbid them, not the standard, as a mean to 
cope with the otherwise insuperable safety 
demonstration objectives. 
Finally, DALs condition independence requirements 
regarding verification activities w.r.t. development 
activities. 

3.3. DAL-dependent requirements on supporting 
processes 

DALs have a significant influence on supporting 
processes i.e. planning, documentation, configuration 
management, relation to Authority etc. 
Level E software is not subject to any development 
constraint, so it will not be discussed any further. 
As defined in section 4 and table A-1 of the core 
document [ED12B/DO178B]1, planning is required 
nearly to the same extent for levels D to A. The 
requirements are exactly the same from C to A. Level 
D is relieved of defining the software life-cycle 
environment, the development standards, and the 
coordination of plan revision. 
The purpose of planning is to define the software 
production means that will ensure compliance with the 
system requirements at DAL-specified confidence 
level. In these plans particular attention has to be paid 
to the development and verification means of multiple-
version dissimilar software, deactivated code, user-
modifiable code, and parameter data items. 
The configuration management process is DAL-
independent but the software lifecycle work products 
this unique process applies to are DAL-dependent. 
Two categories of Change Control, CC1 and CC2, are 
defined for items whose configuration is managed. 
CC2 is a lighter version of CC1, i.e. the configuration 
management activities required by CC2 are a subset 
of that of CC1.  
The higher the DAL, the more work products are 
subject to configuration management, and the more 
often CC1 is required instead of CC2. 
Software quality assurance is handled evenly for the 
three higher DALs: the plans and standards have to 
be defined and applied to the processes, the activity 
records have to be generated, the transition criteria 
monitored, and a process conformity review 
conducted. 
Regarding the certification liaison process, the 
requirements are the same for all DALs. 

                                                      
1 By the time of publication of this paper ED-12C/DO-
178C is accepted by RTCA and EUROCAE but not yet 
published. 



3.4. DAL-dependent requirements on the 
development process 

Originally, DO-178/ED-12 required only the High 
Level Requirements and the executable object code 
integrated on target computer to be developed. This is 
the reason why these objectives are uniformly 
required for all the levels. 
Then software became larger and programming 
evolved towards general purpose languages so that 
intermediate specification refinement steps or 
development artefacts were introduced between the 
HLRs and the executable object code: Low Level 
Requirements, software architecture, source code. 
Producing these three intermediate work products 
became also required, but only for levels C to A. 
So the DALs have a great influence on the 
development process: light-weight process for E & D 
on one side, heavier step-wise refinement process for 
C, B, A on the other side (table A-2).  
Resorting to model-based development, object 
oriented technologies or formal methods, with or 
without automatic code generation, has no influence 
on this [E,D], [C,B,A] split of the development 
processes. These three technologies are regarded as 
new means of producing the HLR, LLR, architecture 
or source code artefacts. Very few development 
assurance objectives were added in the Technical 
Supplements (TS) of version C. MBDV TS introduced 
three new objectives (MB8-10 in table MB.C-2) that 
indeed boil down to a sole one: whatever model is 
used for HLR, LLR, or software architecture, the 
elements of the model that will not be implemented in 
the piece of software must be marked as such. 
This new requirement applies to levels D to A for HLR 
models, and for architecture models2 as well.  
As expected, it applies only from C upward to the LLR 
models. 

3.5. DAL-dependent requirements on the 
verification process 

DALs' influence is even greater on the verification 
process as it modulates: 

- the work products that are to be verified 
(tables A-3 to A-6) 

- the activities that are to be verified (table A-7) 
- the independence of verification teams w.r.t. 

development teams (tables A-3 to A-7) 
Consistently with the [E,D] vs. [C,B,A] split at 
development level, the same split underpins the A-3 
to A-6 verification tables: verification of the HLRs 
against the allocated system requirements and 
verification of the executable object code against the 
HLRs are mandatory at all levels but E, whereas 
verification of the intermediate work products (LLR, 
architecture, source code) and verification of the 

                                                      
2 Though software architecture is not required at level 
D. But if done, and done by means of a model, then 
extra work is required on this non mandated artefact. 

executable object code against the LLRs are 
mandated only from C to A. 
Verification of verification activities is still called 
verification of testing3 in the core document whereas it 
applies also to verification by simulation in the MBDV 
supplement and to verification by proof techniques in 
the FM supplement. 
Verification of verification cases, procedures and 
results on one side, verification of functional and 
structural coverage obtained after requirement-based 
verification on the other side, are the main verification 
of verification activities. At D level, only verification of 
HLR functional coverage is required (A-7.3). 
Verification of LLR functional coverage is required 
from C upward. The required structural coverage (A-
7.5 to A-7.9) gradually increases from C (statement) 
to A (MC/DC). 
Consistently with the way new development 
technologies were considered on the development 
process, very few new quality assurance objectives 
were added on the verification process by the three 
technical supplements: 

- MBDV TS added verification of simulation cases, 
procedures and results wherever model 
simulation is used (3x3 new objectives),  

- OOT TS added verification of local type 
consistency and robustness of dynamic memory 
allocation (OO.9-10 in table OO.A-7), with 
independency for levels A and B. 

- FM TS, like MBDV TS, added verification of proof 
cases, procedures and results wherever proof 
techniques are applied (FM.8-9 in FM.A-3 to A-
6). More significant are the new formalization 
correctness (FM-1x) and method 
appropriateness (FM-1y) objectives in tables 
FM.A-3 to A-6, and even more so the new 
structure coverage and property preservation 
objectives of table FM.A-7 (FM.5-8 and FM.9) 
[LE 2011]. Property preservation and method 
appropriateness apply to all the DALs. All the 
other new verification objectives are required 
only from C upward. 

Regarding the rationale of DAL-dependent modulation 
of verification independency we have the following: 
independence of verification of HLR consistency, 
accuracy and compliance with system requirements 
are mandated for A and B. 
It is also the case for algorithms' accuracy and 
compliance at all the refinement steps, from the HLRs 
to the executable object code.  
Independent verification of instruction and decision 
coverage is also required for A and B.  
Because A and B are very close, decomposition of a 
DAL A system into two independent B-items (sub-

                                                      
3 In DO-178/ED-12 testing mandates execution on the 
target airborne equipment. Execution of the binary 
code on virtualized target hardware accounts for 
simulation. 



system or equipment) is authorized in ARP 4754 (see 
[Blanquart et al., 2012]).  
Independent verification of MC/DC coverage, and 
removal of additional executable code non traceable 
to source code are required exclusively for DAL A. 
There is no independency requirement from C 
downward. 

4. Automotive 

4.1. Software safety objectives 

As explained in [Blanquart et al., 2012], a distinctive 
feature of ISO 26262 w.r.t. the five other standards is 
its criticality allocation granularity.  
In automotive, criticality may be allocated to the safety 
requirements. This fine grained criticality allocation 
policy at system level entails possibility of DAL mix at 
software level, i.e. possibility of DALs defined at 
module, class, or procedure level. 
However, some directed influence constraints 
between the components of the DAL-mix must be 
guaranteed and duly justified ([ISO 26262] part 9, 
clauses 5 and 6), and like in aerospace nuclear or 
railway, the default approach in automotive is to 
develop a piece of software at the DAL which fits the 
most critical of its allocated safety requirements. It is 
especially the case when the properly oriented 
dependence condition4, required for a DAL-mix can't 
be demonstrated. 
Automotive most critical embedded software, ASIL D 
software, has to be consistent with a system safety 
level quantified by a probability rate of 10-8 per driving 
hour. 

4.2. Rationale of gradual software safety 
assurance 

Contrary to DO-178/ED-12 where process objectives 
and activities depend on DAL, ISO 26262 part 6 does 
not modulate the development assurance 
requirements according to ASIL. 
ASIL-dependent variability applies to the methods and 
tools that are accepted, recommended, or highly 
recommended to meet the various objectives of the 
unique ASIL-independent development and 
verification processes.  
In particular, the work products to be supplied for 
confirmation measures5 are the same for ASIL A and 
ASIL D software. The ASILs modulate the level of 
formality recommended for requirement capture and 
software verification, they also drive the applicable 
coding standards and testing coverage criteria.  
Last but not least, ASIL D also enforces a few 
product-based design requirements such as 
implementation of error detection (part 6 table 4), 
error handling (part 6 table 5, and table C.1 for 

                                                      
4 A DAL X item may depend from a DAL Y item only if 
X ≤ Y. 
5 Functional safety related quality assurance 
measures (review, audit, assessment). 

calibration data error detection), and partitioning 
mechanisms (part 6 clause 7.4.1 and table 5). 
Partitioning is especially important as a means of 
substantiating absence of interference between ASIL-
heterogeneous software elements. 

4.3. ASIL-dependent requirements on supporting 
processes 

They are addressed by ISO 26262 part 8 (8-7, 8-8, 8-
10). 
Planning includes: 

- documentation management plan 
- configuration and change management plans 
- software integration and verification plans,   
- unit and integration testing plans,  
- testing plan, 
- safety requirement verification plan, 
- tool usage plans, 
- component qualification plans. 

Regarding documentation, there is no ASIL-
dependent list of documents or work products to be 
supplied. 
Configuration management (part 8 chapter 7) can be 
applied according to ISO/TS 16949, ISO 10007 and 
ISO 12207. There are specific, but ASIL-independent, 
requirements for configuration and calibration data. 

4.4. ASIL-dependent requirements on the 
development process 

For safety requirements specification, an ASIL- 
dependent appropriate combination of natural 
language, semi-formal, or formal notation is required 
(part 6 table 2). For ASIL C and D, a semi-formal 
notation is highly recommended. Contrary to railway, 
formal specification is never highly recommended, 
even for ASIL D. For the lower ASILs, informal 
notation can be sufficient to comply with the standard. 
In ISO 26262, the DO-178/ED-12 notion of derived 
requirement, i.e. a requirement traceable to a design 
choice but not traceable to a system requirement, 
does not exist. 
Software architectural design is peculiar in ISO 26262 
as the standard applies to the whole piece of 
software, contrary to all of its other chapters that only 
apply to its safety-related aspects (part 6 chapter 7).  
The notation and the architectural principles regarding 
interface, module size, hierarchical decomposition, 
control and data coupling, interrupt handing, 
scheduling etc. are ASIL dependent (tables 2 and 3).  
ASIL D software architectural requirements must be 
verifiable by simulation of its dynamic part (part 6 
table 6). Formal notation is recommended, whereas 
semi-formal notation is highly recommended. 
Software modelling and coding guidelines are also 
ASIL-dependent (part 6 table 1). 

4.5. ASIL-dependent requirements on the 
verification process 

The requirement verification methods are ASIL-
dependent (part 8, table 2). From ASIL C upward, 
semi-formal verification of the requirements is highly 



recommended. Walk-through is enough for ASIL A, 
but inspection is highly recommended from ASIL B to 
D. Formal verification of requirements is never highly 
recommended.  
Traceability is explicitly required along the whole 
hierarchical safety requirement structure and to the 
specification of verification (part 8, figure 2).  

Formality in source code verification methods grows 
with ASIL, but formal verification of source code is 
never highly recommended.  

Like in DO-178/ED-12, requirement based testing is 
highly recommended for all the levels, and detecting 
the unintended functions is a verification objective. 

For unit testing, structural coverage is required. 
Statement coverage for ASIL A and B, branch 
coverage for ASIL B to D. MC/DC is highly 
recommended only for ASIL D (part 6 table 12). 

For integration testing, structural coverage is highly 
recommended only for ASIL C and D (function or call 
coverage, part 6 table 15). 

Fault injection tests, resource usage tests, and model-
code back-to-back tests (when applicable) are highly 
recommended for ASIL D. 

5. Industry Automation 

By automation we understand the continuous process 
industries such as nuclear facilities (beside energy 
production), non nuclear energy, metals, cement, oil 
and gas and chemicals, the manufacturing industries 
with the exception of automotive and the batch 
production industries such as pharmaceuticals and 
food and beverage. These industries are relevant of 
IEC61511 for the continuous and batch processes, 
and of IEC62061 for manufacturing industries. Both 
standards are derivates of IEC61508 and, as they are 
not self supporting, refer to IEC61508. 

These three standards address only the electric, 
electronic, programmable electronic systems under 
the concept of functional safety, that is systems 
distinct from the controlled equipment (plants, 
machines, and processing lines) contributing to risk 
reduction.  

The standards are performance oriented. This means 
that, as for the other industries, the functions 
contributing to risk reduction are classified in 4 levels 
(SIL) according to the impact of a failure on safety. 
The requirements are thus increasingly stringent with 
the SIL number. 

The central concept of these standards is to achieve 
the targeted safety integrity and performance by 
putting requirements in different fields encompassing:  

- project management, 
- quality assurance, 
- hardware design, 
- architecture et software development. 

The standards assume that there are two types of 
failures. The failures that are introduced before the 
commissioning of the systems that are only 
systematic failures, and the failures occurring after 
system commissioning and that can be either 
systematic or random. The standard thus addresses: 

- incorrect specifications of the system, 
hardware or software; 

- omissions in the safety requirements 
specification; 

- random hardware failure mechanisms; 
- systematic hardware failure mechanisms; 
- software errors; 
- common cause failures; 
- human error; 
- environmental influences; 

Part 3 (IEC 61508-3) is dedicated to software. 

5.1. Software safety objectives 
When software is involved in a safety related E/E/PE 
system, the standards put requirements on its 
robustness and its integrity concerning systematic 
failures. The safety objectives of a given safety 
related function are defined during the safety 
requirements specification phase in terms of safety 
functional and integrity requirements at the level of the 
safety related function itself. They are then refined in 
hardware and in software safety requirements. 
 
Appendix B of part 2 acknowledges that exhaustive 
detection of systematic software failures introduced 
during development, as well as quantification of the 
efficiency of the software fault avoidance policy are 
intractable. It states that performance is more 
achieved by means of development environment, 
techniques and methods, rather than by quantification 
attempts. Objectives and recommended means are 
thus set for properties such as: 

- Completeness with respect to the safety 
needs; 

- Correctness with respect to the safety needs; 
- Freedom from intrinsic specification faults, 

including freedom from ambiguity; 
- Understandability of safety requirements; 
- Freedom from adverse interference of non-

safety functions with the safety needs; 
- Capability of providing a basis for verification 

and validation. 
However, and consistently with the aforementioned 
intractability statement of prior process efficiency 
quantification, the informative appendix D of Part 7 
presents a statistical method to estimate posterior 
safety integrity levels, especially when importing 
software COTS. 

5.2. Rationale of gradual construction of software 
safety 

According to the targeted SIL level, IEC 61508 
requires for each lifecycle phase, the selection and 
application of methods and techniques aiming to 
provide a suitable context to achieve the expected 
performance level. 



The link between the expected emerging software 
properties and the applied techniques and methods is 
(qualitatively) described in the informative part 7, 
appendix C. 

5.3. SIL-dependent requirements on supporting, 
development and verification processes 

Ten lifecycle phases or activities are covered by the 
standard:  

- specification,  
- architecture design,  
- supporting tools,  
- design,  
- tests and software integration,  
- software/hardware integration,  
- modification 
- verification, validation,  
- safety evaluation. 

The standard defines indirectly 48 possible emerging 
properties for the software. The crossing of the 10 
lifecycle phases with the relevant expected properties 
per phase produces 73 requirements on emerging 
properties. 
The link between the normative methods and 
techniques and the achievement of the expected 
properties is detailed in the informative appendix C of 
part 7. The standard recognises that the achievement 
of a property is obtained through a combination of 
techniques and methods and with their application 
with the proper level of rigour, indirectly driven by the 
targeted SIL number. 
Roughly one hundred different detailed techniques 
and methods are required; ranging from formal proof 
to dynamic addressing avoidance. The techniques 
and methods occur in 184 distinct requirements, 87 of 
them being without any alternative (cf. the 18 tables of 
the normative appendices A and B of part 3). 
Screening the Highly Recommended (HR) methods in 
these tables one notices that: 

- most of the methods related to supporting 
process activities apply uniformly to the 4 
SILs, 

- most of the specification, programming, 
testing or tooling related means either apply 
to SIL1 and SIL2, or to SIL3 and SIL4. A few 
ones apply to SIL1, SIL2, SIL3. Static 
analysis is HR from SIL2 to SIL4. 

- the very few HR techniques exclusively at SIL 
4 are formal specification, formal proof, and 
probabilistic testing.  

As for SIL-modulated verification independency, either 
at person, department, or institution level, it happens 
to be used for functional safety evaluation (part 1, § 
8.2.12 to 14).  

5.4. Conclusion 

There is little difference between SIL 3 and SIL 4. 
There is a large difference between SIL 2 and SIL 3. 
These two facts are acknowledged by the railway 
industry. 96 % of SIL 4 prescriptions are necessary for 
lower SILs. From a project management point view, if 

one is targeting SIL 3, it is probably simpler and more 
effective from a cost point of view to realise the whole 
project at SIL3 level. This is acknowledged by IEC 
61511 for continuous process industry, with the 
penalty of the cost of methods and techniques 
frequently oversized. 

6. Nuclear 

IEC 61226 defines how to allocate the severity 
categories A, B, C to the safety-related functions of a 
nuclear plant, and then IEC 61513 defines, depending 
on the system architecture, how to allocate its DAL, 
called class, to each item. There are three levels: 
class 1 to class 3, mapped to the A, B, C criticality 
levels. 
The guidance for class 2 and class 3 software 
development is stated in IEC 62138, and that of class 
1 in IEC 60880. Hence understanding the increment 
of rigor enforced for class 1 compared to class 2 
needs to sort out which requirements are asserted in 
IEC 60880 while not in IEC 62138. 

6.1. Software safety objectives 

Like with any other software safety standard there is a 
postulated "compatibility" principle of classes with 
probabilistic analysis at system level. A class 1 
software item, possibly flawed by some residual 
systematic failures, is assumed to be consistent with a 
10-4 failure on demand reliability. 

6.2. Rationale of gradual construction of software 
safety 

The higher the class, the longer the list of issues to be 
addressed in the specification, the more safety 
mechanisms to be implemented, the greater formality 
in the development and the higher coverage of 
software verification. 
IEC 60880 for class 1 and IEC 62138 for classes 2 
and 3 enforce processes based on the requirements 
of the system standard IEC 61513. These processes 
are similar (based on the V-cycle) but not identical 
because additional activities and even teams are 
required for the highest classes. Class-dependent 
variability also affects the content of the specification, 
of the implementation, and of the development means 
as well as the extent of the documentation and 
verification. 

6.3. Class-dependent requirements on supporting 
processes 

There is no significant influence of classes on the 
principles of the supporting processes. Let us mention 
briefly configuration management and documentation. 
Configuration management must be performed 
according to documented provisions. Configuration 
management must be applied in particular to the 
items related to the correctness of software, to the 
documents subject to verification, to the components 
needed to build the executable code and to the 
software tools. 



Whatever the class, the Software Requirements 
Specification, the Design Specification, the 
Verification Plan, the Validation Plan, the results of 
the verification actions and all the items related to 
software correctness must be documented. 
Anyway, when going from class 3 to class 1, much 
more aspects are required to be documented, 
justified, verified and placed under configuration 
management. Also, the need for an independent 
verification team in class 1 induces differences in 
communication and reporting means, and therefore in 
the supporting processes. 
Thus, although similar in principle, supporting 
processes are different in practice across classes. 

6.4. Class-dependent requirements on the 
development processes 

Regarding software specification, class 3 requires it to 
conform to the allotted system requirements in a 
verifiable way, and to address a list of issues: the 
interfaces, the functions, the behavioural modes, 
including that in error or detected failure cases, etc. 
Class 2 adds low complexity constraints and quality 
objectives (clarity, precision etc.) to be enforced by 
authoring rules and standards. Class 1 still adds a 
complementary list of technical issues to be 
addressed by the specification like self-supervision, 
the plant's special operating conditions, hardware 
software integration constraints, etc.  
As far as software architecture, design, coding and 
integration are concerned, class 3 mainly requires the 
overall organisation and behaviour to be documented, 
the safety related requirements to be met in all 
specified conditions, and to apply documented 
authoring rules. Class 2 adds a list of technical items 
to be documented, and verifiable rules to be applied, 
especially that aiming at early detection and 
containment of software errors. Class 1 adds 
supplementary and mandatory design rules, in 
particular regarding modularity and verifiable 
determinism. It also requires documenting all the 
dependencies between module verification and 
verification of the integrated software. 

6.5. Class-dependent requirements on the 
verification processes 

Class 3 and class 2 require that at least specification 
and design be verified by competent and independent 
persons (at activity level). Class 1 requires an 
independent verification team placed under 
independent management and verification of each 
development phase with respect to its inputs. Class 1 
requires the techniques, tools and pass criteria to be 
documented. Adequacy of the architecture to the 
safety requirements must be substantiated. 
IEC 62138 accepts class 3 and class 2 source code to 
be tested on the host hardware, or in a software 
engineering environment. Class 3 and class 2 
mandate documented verification, but class 2 adds 
requirements on the verification of the applicable rules 
and standards, on the test sufficiency and on the 
justification of non conformances. Class 1 requires 

analysis in addition to testing, detailed documentation 
and justification of the test cases, procedures, results 
and coverage criteria. Module verification must show 
that each module performs its intended functions and 
does not perform unintended functions. 
Finally, object code verification is performed during 
system integration and validation in the target 
Instrumentation & Control environment. Validation 
must demonstrate that the software complies with its 
functional and interface specification derived from the 
system needs. Some requirements are stated only at 
class 2 and class 1 levels. Class 2 requires 
demonstration that, in the target I&C system, the 
integrated software conforms to each functional, 
performance and interface statement of the software 
specification, and contributes as designed to the 
satisfaction of the system requirements. Class 1 adds 
management independency of the validation team, 
and comprehensive coverage of the signal ranges, of 
the ranges of calculated parameters, of the voting and 
logic combinations. 
For classes 3 and 2, this validation testing (i.e. final 
testing of the integrated system) may be performed on 
a hardware platform identical to the one of the actual 
final system if adequate justification is provided. For 
class 1, validation testing must be performed on the 
actual final system. 

7. Railway 

Railway systems integrate more and more 
programmable numerical equipment including 
consequently software. Some of these systems are 
subjected to RAMS requirements (especially safety 
requirements). It is in particular the case of on-board 
control/command systems known as “safety critical” 
whose failures can cause serious damage to people 
or to goods, as well as systems with very high 
availability targets (telecommunications networks in 
particular).  
The software integrated in such systems 
consequently also undergoes RAMS constraints. 
There are several techniques making it possible, on 
one hand, to avoid or eliminate the development faults 
and, and on the other hand to make the execution of 
the software applications safe in case of occurrence 
of physical or environmental faults. These techniques 
include in particular tests, simulation, proofs, and 
design of safe and reliable architectures including the 
RAMS analyses (Failure Modes Effects and Criticality 
Analysis, Software Error Effects Analyses, Fault 
trees…). 
The standard for the railway domain is decomposed in 
three parts: 
• CENELEC EN 50126 establishes a method for the 

specification and demonstration of reliability, 
availability, maintainability and safety (RAMS), for 
railway domain. 

• CENELEC EN 50129 provides general guidance to 
demonstrate the safety of electronic systems and 



to construct the safety case for signalling railway 
application. 

• CENELEC EN 50128 provides requirements for 
the software used in signaling railway application. 

7.1. Software safety objectives 

The standard CENELEC EN 50128 is particularly 
dedicated to the software development for the railway 
field. Notice that a new version of this standard was 
published in October 2011. This version is stricter and 
introduces some enhancement in quality 
management, tool qualification and software 
maintenance management to address deployment. 
The Safety Integrity Level (SIL) becomes SSIL 
(Software SIL) with levels from 0 (not critical) to 4 
(critical), and for each SSIL, the specific development 
activities (including verification and validation) are 
prescribed.  
For a component of a given SSIL, EN 50128 
describes the processes, methods and tools to be 
implemented during the development. It is about an 
obligation of means, which is added to the obligations 
of quantitative and/or qualitative results. 
Software certification demonstrates the reliability, or 
safety of software systems in such a way that an 
independent authority can check it with sufficient trust 
in the techniques and tools used in the certification 
process itself. It can be built on existing validation and 
verification techniques but introduces the notion of 
explicit software certificates, which contain all the 
information necessary for an independent assessment 
of the demonstrated properties. Software certificates 
support a product-oriented assurance approach, 
combining different techniques and forms of evidence 
(e.g., fault trees, safety cases, formal proofs,...) and 
linking them to the details of the underlying software. 

7.2. Rationale of gradual construction of software 
safety 

Within the framework of critical systems (SIL 3 and 4), 
the design principles to ensure safety generally go in 
opposition to system availability. This is the 
consequence of a “fail stop” design principle aiming to 
stop the system in case of failure and therefore 
ensuring a “fail safe” behaviour.  

As example, in the railway field the plausible failures 
will generally have the effect of “stopping the train(s)” 
which has a strong impact on the system availability. 
This feature, characteristic of applications (like ground 
transportation and energy production) having a “rest 
state” identified as safe and reachable by (relatively) 
simple means and (relatively: 3km and 1mn30s to 
stop a high-speed train at 300km/h) fast, is not shared 
in other fields (like aeronautic) where some vital 
functions must remain available in all circumstances.  

As to software, only subject to design faults because 
of it’s immaterial nature, preventing and eliminating 
these faults by the various prescribed methods for 
high SSIL levels (SSIL 3 or SSIL 4), also contributes 

to improve its reliability level by a better control of it’s 
complexity and quality. 

For the non-critical (SSIL 0) and not much critical 
(SSIL 1 and SSIL 2) applications, the design process 
of software is on the other hand less constrained (as 
well for the programming language and tools as for 
Verification and Validation process) inducing a less 
quality of software, often causing unavailability 
scenarios. For such applications, the use of 
“Commercial Off The Shelf” (COTS) components is 
allowed and therefore frequent. The control of the 
quality of these COTS components, which has 
consequently a direct impact on system availability, 
remains consequently a crucial question, in a context 
of increasing search for profitability. 

7.3. SSIL-dependent requirements on integral 
processes 

The CENELEC EN 50128 requests some plans to 
manage software safety: 

- Software assurance quality plan,  
- Configuration and change management plan, 
- Verification and validation plan,   
- Unit testing plan,  
- Integration testing plan, 
- Overall testing plan, 
- Tool qualification plans. 

Configuration management can be applied according 
to ISO 9001:2008, ISO 9000-3.  

7.4. SSIL-dependent requirements on the 
development process 

Phases, inputs, outputs, transition criteria are defined 
by the standard. 
A list of documents is defined as well as a list of 
milestones. Some definite analyses are mandated 
(e.g. Software Error Effect Analysis for SSIL3-4). 

Regarding documentation, the SSIL have an impact 
on the list of documents (for example, for SSIL0 32 
documents are required, for SSIL1 to SSIL4 46 
documents are required). 

The other work products to be supplied are also 
conditioned by the software SIL: 

- for SSIL0, the ISO 9001:2008 defines the set of 
activities, 

- for SSIL3-4, all the activities are HR, so that the 
development cost is roughly twice as much as for 
SSIL1-2. 

7.5. SSIL-dependent requirements on the 
verification process 

Verification includes software verification but does not 
include the verification of conformity to the standard.  
The conformity to the standard is defined in a specific 
section of the standard and called “software 
assessment”. The software assessment is a specific 
activity realized by a person independent from the 
project that examines the process and all the parts of 
the product (source code, tests scenarios and results, 



documentations, competencies, organization, etc.). 
The assessor can request some activities (specific 
tests, safety analysis, etc.). 
Traceability is explicitly required from the specification 
to the code (vertical traceability) and for each phase 
from the development documentation to the test 
documents (horizontal traceability).  

Formality in source code verification methods grows 
with SSIL and the formal verification of source code is 
highly recommended.  

For unit testing, structural coverage is required. 
Statement coverage for SSIL 0, Branch coverage for 
SSIL 1-2, Path coverage for SSIL 3-4. In the new 
version of the standard, MCDC is highly 
recommended only for SSIL 3-4.  

For integration testing, interface coverage is highly 
recommended for all SSILs. 
Like DO-178/ED12 and ECSS-Q-ST-80C, EN 50128 
requires detection and removal of unreachable code. 
The standard recommends using some of the 
available quality models and associated metrics (e.g. 
size of code; complexity of design and code, test 
coverage, number of failures, etc.) 

8. Space 

Compared to the other standards ECSS-Q-ST-80C 
has two distinctive characteristics: 

1. it pays particular attention to the customer-
supplier relationship, 

2. on many safety assurance issues it only 
requires them to be dealt with by the 
customer and the supplier, without any 
constraint on the way it is done. 

To some extent ECSS-Q-ST-80C is some sort of 
"meta" software safety assurance standard (or 
framework), as it compels the customer and the 
supplier to define their own project specific software 
safety assurance programme. The standard requires 
only the list of topics to be addressed in their 
agreement.  
This list is DAL-dependent (table D-2 appendix D), but 
weakly dependent.  
The list of mandatory topics, called clauses in ECSS-
Q-ST-80C terminology, is exactly the same for levels 
A and B, and nearly identical to that of C, except two 
clauses peculiar to safety critical software.  
This weak dependency is due to the "meta-level" 
nature of ECSS-Q-ST-80C: it defines what is to be 
defined, not what will be done on the project. 
Whatever the criticality of the software to be 
developed, the development assurance issues to be 
discussed are the same, except for the very few ones 
that are meaningful only if the software is of high 
criticality. 
This introduction to ECSS-Q-ST-80C is not 
completely fair. Some of its clauses are precise 
process-based or product-based development 
constraints so that the content of the customer-

supplier agreement on these issues is much more 
constrained by the standard than those left open by its 
overall "meta-level" flavour. 

8.1. Software safety objectives 

Table 6-1 of ECSS-Q-ST-40 defines the mapping of 
the 4 severity levels (failures propagation, loss of 
mission, etc.) to the 4 DALs (A to D for software, 
ECSS-Q-ST-80C) downward. Some corresponding 
probability targets are explicitly mentioned in the 
standard, but their values are not defined by the 
standard. They are set on a project by project basis. 
Hence in the space domain the postulated and 
tabulated "consistency principle" between software 
development assurance levels and probabilistic 
system safety levels applies differently from 
aeronautics or railway. DAL A is consistent with a 
variable probability level whereas DAL A or SSIL 4 is 
consistent with a constant one.  

8.2. Rationale of gradual construction of software 
safety 

As explained previously, the DALs of ECSS-Q-ST-
80C have little explicit influence in the standard, but of 
course they are instrumental in what is agreed on all 
the clauses by the customer and the supplier. 
ECSS-Q-ST-80C is both a process-based and 
product- based framework. It resorts to defining 
quality objectives, development activities, constraints 
on applicable methods, or mechanisms to be 
implemented in the software (e.g. non corruption 
check and check sum in 6.2.4.8 to 10). 
Like DO-178/ED-12 it does not singularize the safety 
requirements among all the software requirements. 

8.3. DAL-dependent requirements on supporting 
processes 

Planning is extensive, like with all the other standards: 
- product assurance plan, 
- development and verification plan, 
- configuration management plan, 
- test plan and acceptance test plan 

Change control, configuration management, 
documentation management are obviously 
addressed. 

8.4. DAL-dependent requirements on the 
development process 

Phases, inputs, outputs, transition criteria have to be 
defined by the customer and the supplier, they are not 
defined by the standard. 
A list of documents is defined as well as a list of 
milestones. Some definite analyses are mandated 
(e.g., Hardware Software Integration Analysis). 
Methods and tools to be used for all activities of the 
development life-cycle are to be identified by the 
supplier and agreed by the customer. 
Quality requirements, including safety and 
dependability, must be defined in quantitative terms. 



A distinction is made between manual and automatic 
coding. If code generators are used some dedicated 
technical issues are to be addressed (6.2.8: testing, 
tool qualification aspects, V&V documentation) 

8.5. DAL-dependent requirements on the 
verification process 

Verification includes software verification and 
verification of conformity of the process to the 
standard (6.2.6.7). 
The few requirements that are only applicable to DAL 
1 and 2 are verification requirements: 

- Validation tests must be re-executed on non 
instrumented code (6.2.3.8), 

- Independent software verification must be 
performed by a third party and be a combination of 
reviews, inspections, analyses, simulations, testing 
and auditing (6.2.6.13), 

- Independent software validation must be 
performed by a third party (6.3.5.28). 

But on a structural coverage of testing one reads 
"based on the criticality of the software, test coverage 
goals for each testing level shall be agreed between 
the customer and the supplier and their achievement 
monitored by metrics" (6.5.3.2). 
Like DO-178/ED-12, ECSS-Q-ST-80C requires 
detection and removal of unreachable code. In 
addition it requires analysing the need of post removal 
re-verification and re-validation (6.2.3.6, 6.2.6.5). 
The standard recommends using some of the 
available quality models and associated metrics (e.g. 
size of code; complexity of design and code; fault 
density and failure intensity, test coverage, number of 
failures, estimated and verified numerical accuracy, 
etc.). 

9. Synthesis 

When comparing the six standards, one notices that 
their respective DALs condition: 

- the quality assurance objectives,  
- the processes' activities,  
- the processes' work products,  
- the development means (methods, tools, 

rules, standards),  
- the independence of some verification 

activities (software or process' conformity to 
the standard), 

- and last but not least, the content of the 
software product itself (defensive 
programming, error detection mechanisms 
etc.).  

Hence the DALs influence software safety 
construction on six different dimensions. 
There are significant differences between the 
industrial domains, and in some cases even opposite 
choices: DO-178/ED-12 enforces a DAL-dependent 
process supported by DAL-independent means (since 
there is no mean recommendation), whereas IEC 

61508, ISO 26262, CENELEC EN 50128 and IEC 
62136 & 60880 enforce DAL-independent processes 
supported by DAL-dependent means. 
Space is a bit particular as it is the only standard that 
allows client and supplier to agree on some process 
and means on a project by project basis. 
Among the four mean-prescriptive standards, a 
tentative synthesis of the DAL-modulation of the 
development and verification means is the following: 

 Auto. Auta Nucl Rlw 

Design & programming rules X X X X 

Requirement and architecture 
notations 

X X X X 

Methods of verification by analysis X X X X 

Types and methods of testing X X X X 

Testing environments X X X X 

They all modulate the authoring standards, the design 
rules and the verification means. 
They also all resort to verification independence, but 
on a varying perimeter: process conformity only, or 
process conformity and software verification activities. 

10. Conclusion 

Thus we observe many significant cross-domain 
differences in the manner of minimizing the risk of 
residual software development or verification errors. 
The discrepancies between the six standards are not 
a matter of degree: more or less planning, more or 
less rules and standards, more or less structural 
coverage or verification independency etc.  
Some major discrepancies are a matter of principles: 
definition of requirements vs. requirement of 
definitions, modulation of activities vs. modulation of 
means. 
Some positioning of the standards with respect to the 
six dimensions is possible: 

DAL-dependency  

None Medium High 

Product/content Aero Automation 
Automotive, 

Space 
Railway 

Nuclear 

 

Process/                 
Quality objectives 

 Automation 
Automotive, 

Railway 

Aero   
Nuclear 
Space* 

Process/ activities Automation 
Automotive,  

Railway 

Nuclear Aero  

Space* 

Process/ means Aero Nuclear 
Space* 

Automation 
Automotive, 

Railway 

Process/ 
Independence/ V&V 

 Aero 
Automation 
Automotive 

Nuclear 

Space   
Railway 

Process/ 
Independence/ 

Conformity 

 Automation 
Automotive 

Nuclear 

Aero    
Space 

Railway 

The * means an indirect DAL-dependency, i.e. not 
defined by the standard but practiced within customer-
supplier agreements. 



Because of the these great foundational differences 
between the aeronautic standard, the space standard, 
the nuclear standards, and the three other ones 
considered as a reasonably homogeneous group, 
comparing the six highest DALs to one another seems 
hopeless. The question of cross-domain equivalences 
or ranking formulated in the introduction may be given 
an answer if one restricts its scope to the group of 
standards that derive from, or at least were influenced 
by, IEC 61508. Even so, it will remain difficult, but will 
be attempted in further work of our CG2E group. 

Another approach, that would encompass the six 
domains, would be to rely on accident statistics. Since 
aeronautics, nuclear, railway and space have now 
been experiencing their standards over 20 to 30 
years, some experimental confirmation, or 
invalidation, of their efficiency could be looked for in 
the respective safety agencies' fatal accidents 
statistics. Then some cross-domain comparison of 
these statistical data could be attempted. Thus return 
on experience, provided some sound statistical and 
probabilistic arguments are found, might show that the 
different rigor enforcement policies are indeed 
efficient, and that they would lead in some definite 
cases to admittedly comparable safety levels. Such 
an approach will also be attempted in future work. 
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13. Glossary 

ARP Aerospace Recommended Practice 
ASIL Automotive Safety Integrity Level 
CC Change Control 
CENELEC European Committee for Electrotechnical Standardisation 
CG2E Club des Grandes Entreprises de l’Embarqué 
COTS Commercial Off-The-Shelf (component) 
DAL Development Assurance Level 
E/E (/PE) Electrical/Electronic (/Programmable Electronic) 
ECSS European Cooperation for Space Standardisation 
EUROCAE European Organisation for Civil Aviation Equipment 
FM Formal Methods 
HLR High Level Requirement 
I&C Instrumentation and Control 
IEC International Electrotechnical Commission 
ISO International Organisation for Standardisation 
LLR Low Level Requirement 
MBDV Model Based Development and Verification 
MCDC Multiple Condition Decision Coverage 
OOT Object Oriented Technologies 
RTCA Radio Technical Committee for Aeronautics 
SAE Society of Automotive Engineers 
SIL Safety Integrity Level 
SSIL Software Safety Integrity Level 
TS Technical Supplement 


