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Abstract: 
Safety standards in most domains (aeronautics, automotive, industry, nuclear, railway, space) consider software 
(and more generally, design) as a deterministic artefact. They propose a global rationale combining probabilistic 
evidence on hardware random failures and deterministic evidence on systematic causes of failures including 
software. In a context where software is more and more pervasive in all systems, and where it is sometimes 
advocated that software complexity and size seem to provide some relevance to a probabilistic view of software 
behaviour, several initiatives suggest to change the way to address software in the global system safety 
assessment. This is a complex question with many facets. Among them the authors propose to discuss in the paper: 

- foundations, relevance and limits of probabilistic assessment for software, 

- relationship between software criticality category, (or class, DAL/SIL/ASIL/SSIL etc.) and probabilistic safety 
objectives, 

- the rationale for software diversification and to what extent probabilistic assessment is part of it. 

Keywords: software statistical testing, probabilistic system safety assessment, rationale of safety standards, DAL, 
SIL, ASIL, SSIL, cross-domain comparison. 

1. Introduction – Position of the paper

Over the years, it has been recognized on the one hand that failures of safety systems may be due not only to 
random failures but also to "systematic causes" (be they called design faults, development errors etc.), and on the 
other hand that this kind of causes are less amenable to probabilistic assessment than e.g., random hardware 
failures. This is acknowledged and addressed by most existing safety standards under the form of the combination 
of quantitative (probabilistic) evidence and qualitative (deterministic) evidence, as appropriate regarding the various 
kinds of causes (see e.g., [Baufreton et al. 2010]). 

The increasing role and complexity of software in systems, including safety critical ones, seem to make probabilistic 
evaluation of software reliability and statistical testing more and more attractive for some industry actors. They 
propose to at least modify the equilibrium between the various kinds of evidence in the global assessment 
framework (quantitative vs. qualitative, probabilistic vs. deterministic, etc.). 

Originally motivated by technical discussions held within standardization committees, the work presented in this 
paper was undertaken by a French cross-domain group working on safety standards(1). Software probabilistic 
assessment and statistical testing have been investigated for decades and a comprehensive bibliography would 
encompass hundreds of omnibet references. Starting from [Strigini et al. 1997], [Rushby et al. 2014] and [Ladkin et 
al. 2015], we address among the many facets of this complex matter the following aspects: 

- whether and to which extent probabilistic assessment could be valid for software, particularly for safety critical 
systems, 

- which relationship could exist between software criticality category (or class, DAL/SIL/ASIL/SSIL etc.) and 
probabilistic safety objectives, 

- whether the benefits of solutions such as software diversification could be amenable to some quantification, 

1 Originally created in 2009 as part of the "Club des Grandes Enterprises de l'Embarqué" this working group on safety standards is now attached 
to Embedded France. It regularly publishes the results of exchange and common work between its members, experts in safety and related 
standards covering as many domains as aeronautics, automotive, industry, nuclear, railway, space. See e.g., [Baufreton et al. 2010], [Blanquart et 
al. 2012]. 
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2. Technical Background  

2.1. What is software statistical testing? 

The characteristic feature of software statistical testing is probabilistic generation of test data. There are various 
purposes for doing so, and various ways of doing so. Following [Thevenod 91], [Thevenod 95], randomness on 
inputs may be used to find faults or to assess dependability at the end of the verification stage. In the former case, 
coverage criteria are the outcome of the statistical testing activity, as opposed to values of probabilities in the latter 
case.  
The coverage criteria are based on activation counters logging how the items of the software are exercised by the 
generated input data. Depending on the nature of these items, statistical testing is qualified as structural or 
functional:  

• structural if the items are implementation-oriented (e.g. control flow-graphs),  
• functional if they are more specification-oriented like state-transition graphs or data-flow graphs.  

 

When randomness is “blind”, i.e. when the random input profiles are generated by means of uniform probability laws 
carrying no frequency information related to actual usage or operation, statistical testing is named random testing.  

Random testing applies exclusively to statistical testing devoted to finding faults and fault removal. Random testing 
cannot be used for software dependability assessment. To support software dependability assessment, the 
randomly generated input data must be statistically consistent with the operational profiles. 

It is sometimes claimed that statistical testing may support fault forecasting based on software reliability growth 
models, in addition to fault finding and removal. 

 

Assessing Dependability

Specification-oriented Implementation-oriented
Functional Statistical Testing Structural Statistical Testing Statistical Testing

Structural Coverage
Finding  Faults

Event Probabilities

 
Table 1: Types of statistical testing 

 
In this paper we exclusively focus on statistical testing for software dependability assessment.  

 

2.2. What is “software failure”? 
A given piece of software, intended to perform a specified function, may be affected by faults in its functional 
requirements or by errors in the development process. When the inputs activate a fault, the computed outputs differ 
(deterministically) from the intended values and a system failure may occur. 

While at random dates hardware components may lose some functional capability, software faults, when present, 
are present from the very beginning. The wording “software failure” inherited from hardware, electrical and 
mechanical engineering is convenient but misleading. When some definite inputs activate a fault into malfunctioning 
it may be perceived at system or user level as a random failure event. But “randomness” is present only in input and 
execution context variability, in other words in the operational profile (OP). 

Whatever “software failure” event is quantified, a trigger of system safety, system reliability or system availability 
events, the software2 to be assessed is a deterministic transformer of the inputs, which vary with some randomness 
according to the actual OP, hence the critical importance of OP modelling accuracy to ensure validity of the 
probabilistic assessment. This is the reason why we illustrate sensitivity to OP modelling by an example. 

 

2 Since our primary concern is safety critical software, software is assumed deterministic 
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2.3. Probabilistic modelling of software dependability assessment 

A probabilistic model consists of a random experiment repeated with independence and observed by means of 
events that must meet Boolean algebraic properties. Then a probability measure is defined on these events [Rényi 
2007]. 
 
In case of software statistical testing the random experiment is made of five steps, and is repeated N times where N 
is the sample size: 

• Set-up of the program in a state common to the N experiments and ensuring independence between them. 
The more complex the software and its execution environment, the harder to meet this compelling 
requirement, 

• Random generation of an input sequence (IS), consistent with OP probability law. OP denotes the set of all 
possible input sequences submitted to the program at operation-time, plus frequency information: a 
probability density function (pdf) defined over the set of all possible input sequences. In practice OP, as a 
probability law, is a very complex object: a high-dimension support set, plus a multivariate function defined 
on this set. The duration of one input sequence is that which is relevant for the quantified event: constant or 
variable, cycle, minutes, missions; hours, years etc. As previously mentioned, random generation does not 
mean random testing since the probability laws used on the program inputs are not all uniform. Some may 
be uniform, but this should not be a “by-default choice” because of lack of information but by explicit choice 
to ensure adequacy3 with operational conditions. 

• Run of the program with the generated IS, 

• Event evaluation of the run. An event is a predicate defined on some observation variables common to all 
runs (program I/Os, internal variables, environment variables etc.). Depending on how far the specification is 
formalized and amenable to execution, the information gathering process to evaluate the event-predicate is 
automated or not. The event-predicate is the test oracle of deterministic testing, 

• Decision. In the end, the random experiment is summed-up into a yes/no decision status on the event-
predicate. This status is the run-specific realization of the Bernoulli random variable D associated to the 
event. It is a binary random variable. Its probability law is defined by: 

o Pr(D=0)=p, where p is the parameter of the Bernoulli law of D. We assume that the event associated 
to D is stated so that “false” means “problem occurrence”. Probability p is the risk of “software 
failure”, which has to be estimated by means of the N-sample of independent runs. 

o Pr(D=1)=q=(1-p) since the two events are exclusive and complementary. The realization of D at run 
n in N is like tossing a coin. Probability p is not necessarily very small, i.e. that of a rare event. It is 
the limit of C0/N where C0 is the number of (D=0) events in the N runs. 

 
Once C0 is known, it is not possible to compute p from N and C0 only. One can choose p= C0/N, which is the only 
sensible choice available. But another N-sample of runs would have given a different count C0’. Hence the computed 
p would fluctuate if we repeated the building of samples made of N runs. 

This problem is overcome by standard interval estimation of the parameter p for the binomial law of parameters N 
and k=C0 associated to D. The binomial law is the probability law of the number of heads (resp. tails) observed after 
tossing N times the same coin of probability p. Handling the random fluctuations of C0/N over repeated N-run-
samples is analytically tractable. 

Given an accepted risk of error on the computed p because of performing a unique N-run-experiment (this is a 
design-office risk, usually noted α, whose value is commonly chosen between 10% and 1%), one can compute an 
interval in which the true value of p is likely to lie. The probability of the design office event “the true value is not in 
the computed interval” is α. So the confidence on the interval is (1 – α). In the example of section 2.5 that illustrates 
the sensitivity to OP and the robustness issue, we took α = 1%. 

 

3 Validity or accuracy might be preferred as synonyms  
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2.4. Probability of fault freeness 

Up to now, we did not address the quantity of faults in the software. We did not consider if there are any, nor how 
many they are and where they are. We restricted ourselves to an external view, just counting the discrepancies of 
the program’s behaviour when observed through events and N runs. 
 
Statistical testing is sometimes related to this second question of the quantity of residual faults in a piece of software. 
[Rushby et al. 2014] proposed a conceptual framework to encompass both issues: 

• development assurance efficacy, that is estimating the likelihood of existence of residual faults in spite of a 
rigorous development, and possibly evolution of this likelihood over time (software reliability growth models), 

• probabilistic software assessment, a snapshot view of software reliability, without the explicit estimation of 
the quantity of residual faults.  

 
[Rushby et al. 2014] aims at bridging the gap between deterministic software correctness and probabilistic system 
safety. The authors attempt to define the probability of software perfection (fault freeness) and the probability of 
software failure under “randomly selected demand”. They state the formula: 

Pr(Sw Fails”)= 
Pr(“Sw Fails” | “Sw is fault-free”).Pr(“Sw is fault-free”) + 
Pr(“Sw Fails” | “Sw is not fault-free”).Pr(“Sw is not fault-free”). 

 
which we abbreviate in: 

Pr(SF)=Pr(Sc).Pr(SF|Sc) + Pr(Snc).Pr(SF|Snc) 
 
Consistently with the event evaluation stage in the random experiment definition (cf. .section 2.3), we interpret the 
notion of “Software Failure” in the following way: it assumes the existence of an oracle (computerized or human-
based) over the observables of software Sw, and the existence of a set of selected runs that may violate this oracle. 
‘Sc’ means ‘S is correct (fault free)’, and ‘Snc’, non correct, is its negation. The formula is based on the total 
probability theorem for the “fault-free” vs “not fault-free” alternative. 
 
We question the relevance of the concept underlying Pr(Sc) and Pr(Snc), in practice at the very least. In any case it 
is true that a fault-free software cannot activate a failure, so the conditional probability equation Pr(SF|Sc)=0 holds, 
and the formula simplifies to:  

Pr(SF)=Pr(Snc).Pr(SF|Snc) 
 
In [Rushby et al. 2014] different ways to estimate or upper-approximate Pr(Snc) are discussed, attempting to take 
into account the influence of development assurance levels (DAL, SIL, ASIL, SSIL). In 2.2 and 2.3 we tried to define 
Pr(SF|Snc) precisely and we sketched out how to compute its estimate using binomial parameter estimation. 

We would like to underline that “randomly selected demand” has no intrinsic meaning: does it mean e.g., conformant 
to uniform laws on the inputs, to normal laws, to any arbitrary law on some physically significant combination of 
some inputs to be estimated in operation?  

As already mentioned, Pr(SF) is critically dependent on OP, the probability law that drives the inputs to software 
[Strigini et al. 1997]. The Ariane 501 accident provided a spectacular example of the critical dependency of Pr(SF) 
on OP: a range change on a very single parameter (the horizontal velocity) and Pr(SF) jumped from ~0 to 1.  

A more precise simplified formula making explicit the dependencies with respect to OP would be: 
POP(SF)=P(Snc).POP(SF| Snc) 

 
 

2.5. Robustness of software probabilistic assessment 

As reviewed in [Ladkin 2015], there are many difficulties to overcome for functional statistical testing to be performed 
in a valid manner. We would like to underline an additional one: the possible instability, and hence absence of 
meaning, of the estimated probabilities with respect to great, or even tiny, variations on OP probability density 
function (pdf). 
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The example program is derived from the famous Bertrand’s paradox [Rényi 2007]. It takes as inputs the 
coordinates of two points in the plane. It checks whether these points lie on the unit circle centered at the frame’s 
origin and whether the length of the chord defined by the two points is greater than the side length of the encircled 
equilateral triangle. This geometric property is named (P). The chords meeting (P) are colored green, and the other 
ones are colored red. 

function [status]=program(x1,y1,x2,y2) 
epsilon=0.01; 
R=1; 
side=sqrt(3); 
  
if abs(x1^2 + y1^2 - R^2) < epsilon &&  
   abs(x2^2 + y2^2 - R^2) < epsilon,  
   if sqrt((x2-x1)^2 + (y2-y1)^2) > side,  
        status = 1; 
   else status = 0; end; 
else  
    status = -1; 
end  

Figure 1: The source code of the program (distance computation and thresholding) derived from Bertrand’s paradox 

 
Figure 2: Functional statistical testing of (P) using uniformly generated random chords on the unit circle  

 
We then use six different methods (D1 to D6) to generate the uniformly spread points over the circle (the ends of the 
chords). They only differ in the geometric construction of the points (Cartesian or polar coordinates etc.), all the 
random variables are uniformly distributed over their range ([-1,+1], [-π, + π], etc.). Two sample sizes are used 
(1 000 and 100 000). The results of the interval estimation of the binomial parameter at 99% confidence level for the 
statistical validity of (P) are the following: 

 
Table 2: the estimated probabilities of (P) for six different interpretations of “uniform” in the definition of the 

operational profile and two sample sizes. Pe is the estimated probability p. 
 
The probability estimate Pe ranges from 0.33 to 0.50, from 1/3 to 1/2, which is a surprising large variation when the 
six OPs that drive the sampling processes are expected to be similar enough to be considered equivalent. They are 
all eligible interpretations of “uniformly spread on the circle”. Then, what is the meaning of these probabilities if they 
fluctuate so much for nearly undetectable reasons, uncontrollable in software verification practice? 
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2.6. Estimation of OP distribution laws 

Example in section 2.5 illustrates the extreme sensitivity of software dependability assessment to the OP-pdf. 
Changes of OP-pdf have first order influence on POP(SF| Snc) even for a program as trivial and regular as that of 
2.5. 

But even worse, when no change is intended on the law (let’s say “uniform” as in 2.5), the way of building the test 
data generator conformant to this law leaves room to tiny degrees of implementation freedom that may have also 
first order influence on the estimation.  

Unfortunately it is so whatever confidence level α is chosen. It is not a matter of estimator convergence and 
precision depending on N and α. Even with very small values of α (let’s take 10-5) and very large samples, the 
middle of the intervals can have chaotic jumps with respect to seemingly non significant changes in the 
implementation of the random generator. 

This has consequences on qualification of COTS by proof in-use and service history. Extreme care must be taken as 
to the sensitivity of the computed probabilistic dependability indicators with respect to OP variability between the first 
and second usage context. 

2.7. References to probabilistic software assessment in safety standards 

Some standards such as EN 50128 refer to statistical testing as a possible means of software dependability 
assessment. Statistical evaluation is also referenced in an informative annex of part 7 of [IEC 61508] which states: 

“A probabilistic approach to determining software safety integrity for pre-developed software”. The text of this annex, 
now 17 years old, is very misleading. There are indications that very complex software such as operating system 
could be evaluated. This is not possible due to the very strict requirements applicable to operational history and data 
collection. These requirements are far beyond any practical application for such software. These critical aspects can 
remain unnoticed by a reader not deeply acquainted with the required mathematical statistics. 

Furthermore, the state-of-the-art has significantly evolved since the references quoted in the standard. There is thus 
a clear need to reshape this text, clarify its mathematical foundations and define its possible scope of application. 

Statistical testing is also mentioned in informative annex E of [IEC 60880]; anyway, this standard states that "The 
validity of the calculated pfd depends upon the similarity of the profile of the test inputs to the profile of the actual 
inputs experienced by the system in operation. If (...) used on an unrealistic operational profile (...) a pfd will be 
estimated that may be very different to the actual system availability that would be obtained in active use. This is a 
fundamental weakness of the statistical testing approach as it is generally very difficult to accurately determine the 
operational profile that a system will experience in use, and this is particularly true for systems with large numbers of 
inputs." 

The other standards considered in this paper (cf. References) do not resort to statistical assessment of software 
quality. 

3. Software reliability and DAL/SIL/ASIL/SSIL 

Given this setting, can we argue some link between development assurance levels and software reliability?  

In system safety engineering, the probabilistic safety objective assigned to an entity determines its DAL by means of 
domain specific regulatory tables [Blanquart et al., 2012], [ED79A/ARP4754A], [EN 50129], [IEC 61508], [ISO 
26262]. The converse is irrelevant, probabilities cannot be derived from DALs. 

Since probabilities drive DALs at system level (resp. SIL, ASIL or SSIL in automation, automotive and railway), 
software items included, the question is “why not assigning DALs to legacy software or COTS by means of reliability 
measurement?” This would be some sort of reverse-engineered DAL, substantiated by product assessment instead 
of process assessment. 

In process automation, some equipment and software vendors tend to lobby this way. In aeronautic, space, railway, 
and nuclear, rigour of component development is explicitly stated in standards as a contextual notion. It is system 
dependent, not specific to the component.  

Component reuse or COTS use from system to system without dedicated component contextual evaluation, has to 
be performed with care. Masking system dependency, a reverse engineered DAL/SIL/ASIL/SSIL would be 
dangerously misleading. 
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4. N-version programming and system safety  

4.1. Behavioral view .vs. probabilistic view 

In all industrial domains it happens that hardware components reliability is too low to meet the catastrophic event 
probability objectives with single channel architectures. Duplex or triplex architectures introduce redundancies, 
possibly with hardware dissimilarity, to favour failure independence and thereby meet the quantified rareness 
objectives as low as e.g., 10-9 per hour or 10-5 failure on demand. 
 
Because of the influence in the software arena of these compelling architectural patterns, or may be for the sake of 
uniformity in probabilistic safety and reliability assessment, there is some inclination towards quantifying “software 
failures”, and managing their statistical independence.  

In addition, since DAL/SIL/ASIL etc. may be seen as process-based means to ensure quantified safety objectives 
over all items, including software, there are candidate probabilities for software failures at hand: that of the regulatory 
tables such as 10-9/h for ASIL D in automotive, or 10-5/h for DAL C in aeronautics etc. As mentioned in §3, the 
DAL/SIL/ASILs ensue from or may be linked to probability objectives. 

Assuming that system and software development assurance meet their objectives, the probability of all “failures” of 
software S could be uniformly upper-bounded by the regulatory value associated to its DAL/SIL/ASIL. 

But even then, even with these sensible but disputable probabilities for ‘software failures’, software dissimilarity 
would not be motivated by search for partial or complete statistical independence, at least for safety critical 
software4. 

For safety critical software, dissimilarity, also named N-versions programming, aims at architectural and behavioural 
objectives. The aim is to avoid single-cause catastrophic failures initiated by software (or double-cause in space 
domain). Dissimilarity copes with possibility of software-initiated catastrophic behaviours, not quantity thereof. It 
resorts to common cause analysis, for catastrophic effects caused by single (or double) residual faults in 
specification or implementation. 

A 1-version piece of software mapped on k hardware redundancies may generate common cause failures in two 
ways: 

1. On its own, when its k-replicated behaviour turns out to be catastrophic at system level, 

2. As a coupling influence over the k hardware replicates, which may no longer be independent initiators (both 
causally and statistically), in spite of their possibly independent constituencies. 

The first one is addressed by software development assurance, which encompasses formal methods to tend to 
elimination of correctness faults (conformance defects in the wording of standards). 

The second kind is addressed by a set of best engineering practices to isolate the software behaviour from the 
execution platform, i.e. from any other influence than its specified inputs, initial state, and configuration parameters. 
Isolation best practices are detailed in the next section. 

 

So in the setting of safety critical systems, N-version programming is advocated, possibly imposed, either because 
of confusion with hardware and plant architecting, or because of silent doubt on process assurance’s efficacy for the 
highest criticality levels. 

 

4.2. Conditions for effective 1-SW k-HW redundancies 

We consider a unique piece of software replicated on k hardware redundancies, which may be dissimilar or not. Are 
there conditions to ensure independence of hardware failures in spite of the potential common cause failure created 
by software uniqueness? 

4 Dealing with lower system/software criticalities (e.g. maintenance functions and system reliability).is another issue 
outside the scope of this paper. 
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Two-way isolation of the application software from its environment meets these conditions: 

• No influence of the environment (operating system, hardware/software integration, etc.) on the functional 
behavior of the application layer. It must depend exclusively on its specified inputs and initial state. 

• Conversely, no influence of the application software on the operating system, the execution platform, and 
more generally any external item other than the specified outputs. 

 

4.3. Conditions for effective k-SW k-HW redundancies 

In case of k-version programming over the k hardware redundancies, one may distinguish two situations: 
• k-version at implementation level only, 
• k-version at specification level and implementation level. 

 
The intended meaning of specification here includes system requirements allocated to software, software high level 
requirements, functional requirements, design and low level requirements. 
Considering k-version implementation to enforce software failure independence, [Knight et al. 1986] provided 
experimental evidence of non-effectiveness. Moreover, as software development methods significantly improved 
since the late 80s (model-based design, automatic code generation, model-checking), correctness of implementation 
is not the major concern. 
In spite of software engineering progress, validity and completeness of system and software specifications remain a 
major issue. When possible, diversification at specification level would be beneficial. But it is most often than not 
very difficult to state the same algorithmic problem in two actually different manners, and then prove that the two 
formulations define the same set of expected behaviors… 
 
Functional diversity (provision of different functions, e.g. based on different physical phenomena, to achieve the 
same safety objective) is even stronger than specification diversity, and is used in nuclear, space and other 
domains. 
 

5. Conclusion 

We tried to delineate some border lines in system and software safety assessment, mainly deterministic vs. random, 
behavioural vs. statistical. 
These border lines are here and there left implicit in the standards, possibly because of some subtleties in their 
rationale, possibly also because of the limits of current engineering methods and tools. 
 
We mainly focused on the validity conditions of probabilistic “software failure” estimation and on two system level 
aspects of probabilistic software assessment: design assurance levels and n-version programming. The validity of 
the operational profile distribution law and the sensitivity, possibly chaotic to this law, seemed to us the main 
impediments to probabilistic assessment of software dependability (not even mentioning the well-known difficulties 
related to the needed computation effort and time for ultrahigh reliability software, definitely an important issue as 
well though not addressed here). 
Unfortunately, these impediments are even more hindering as software complexity increases, whereas statistical 
testing is sometimes advocated as an opportunity for greater cost effectiveness on very large software. 
 
Driven by the increasing complexity of software and the trend toward ubiquitous systems of systems, there is some 
incentive to grant credit to statistical software assessment in safety standards under revision. 
We explained why we remain extremely cautious about the validity of computed probabilities related to “software 
failures” and why we feel some danger in such a trend. 
Basically, we reject, for ultrahigh reliability software, a move towards more statistical assessment against less 
development assurance. However, such a move may be debatable on low reliability software. 
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7. Glossary 
ASIL Automotive Safety Integrity Level 
COTS Commercial Off-The-Shelf (component) 
DAL Development Assurance Level 
OP Operational Profile 
PDF Probability Density Function 
PFD Probability of Failure on Demand 
SIL Safety Integrity Level 
SSIL Software Safety Integrity Level 
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