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Abstract: 
How different are the approaches to combining 
formal methods (FM) and testing in the safety 
standards of the automotive, aeronautic, nuclear, 
process, railway and space industries? This is the 
question addressed in this paper by a cross-domain 
group of experts involved in the revision committees 
of ISO 26262, DO-178C, IEC 60880, IEC 61508, EN 
50128 and ECSS-Q-ST-8OC. 

First we review some commonalities and differences 
regarding application of formal methods in the 
aforementioned standards. Are they mandatory or 
recommended only? What kind of properties are 
they advised to be applied to? What is specified in 
the different standards regarding coverage (both 
functional and structural) if testing and formal 
methods are used jointly? 

We also account for the return on experience of the 
group members in the six industrial domains 
regarding state of the art practice of joint use of 
formal methods and testing. Where did formal 
methods actually prove to outperform testing?  

Then we discuss verification coverage, and more 
specifically the role of structural coverage. Does 
structural coverage play the same role in all the 
standards? Is it specific to testing and irrelevant for 
formal methods? What verification termination 
criteria is applicable in case FM-test mix? 

We conclude on some prospective views on how 
software safety standards may evolve to maximize 
the benefits of joint use of dynamic (testing) and 
static (FM) verification methods. 

Keywords: Safety standards, cross-domain 
comparison, software verification, formal methods, 
tests, coverage. 

1. Introduction 

While testing has for long been one of the major 
software verification means, the so-called static 
analysis methods have been gaining momentum 
since the early 2000s. They differ from dynamic 
analysis such as testing in the sense that they do not 
require actual execution of the code.  

Static verification techniques include model 
checking, abstract interpretation and theorem 
proving. They perform symbolic computation on 
source code taking into account all the execution 
cases, but possibly even more.1. On this issue of 
exhaustiveness w.r.t. execution cases, dynamic and 
static software verification techniques are commonly 
and duly opposed to one another since the former 
samples software correctness, whereas the latter 
guarantees conformance to the formalized 
specification for the analyzed properties.  

But from usage perspective, there is no point 
opposing static and dynamic techniques. As 
experienced in various safety related industrial 
domains and as even reflected in some of their 
software safety standards, joint use of testing and 
formal methods is beneficial and gaining adoption by 
software practitioners.  

Joint use of testing and static analysis in six software 
safety standards (ISO 26262, DO-178C, IEC 60880, 
IEC 61508, EN 50128 and ECSS-Q-ST-8OC) is the 
issue addressed by the group who co-authored this 
paper. This group, formerly named CG2E group [1] 
is now affiliated to SYNTEC Informatique as part of 
Embedded France. After reviewing the main 
commonalities and differences between the six 
verification policies, we give an account on standard 
per standard basis. Finally we explore the role of 
structural coverage analysis, as a key verification 
activity to address when using FM and testing jointly. 

2. Variability of approaches to verification 

Before focusing on verification mix and the 
associated coverage issues, we first review high 
level differences between the standards that are 
noticeable at process level. 

The six industrial domains may be split into two 
groups, depending on whether their respective 
software dependability standard is mainly a safety 
standard or a development assurance standard.  

                                                      
1 Some additional impossible execution cases 
because of outer-approximation in set-based 
analysis. 
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The point at stake is the existence, or not, of a 
specific software level risk analysis (product and 
process). ISO26262, IEC 61508, EN 50128 require a 
software level hazard analysis to be performed. They 
also isolate the safety-related software requirements 
from the other requirements and ask for higher rigor 
in the way they are addressed.  

Domain Standard Rationale 

Aeronautic DO-178 Development 
Assurance 

Automotive ISO 26262 Safety Standard 

Nuclear IEC 60880 Development 
Assurance 

Process IEC 61508 Safety Standard 

Railway EN 50128 Safety Standard 

Space ECSS-QST-80C Development 
Assurance 

Table 1: Overall orientation of the standards 

To the opposite, aeronautic, space and nuclear 
consider safety exclusively at system level. The 
system level safety functions are allocated to the 
software units, and they have then to be 
implemented in a correct way. Conformance with 
these allocated system requirements i.e. ensuring 
accuracy and completeness of the software 
specification on the one hand, and correctness of the 
implementation against the specification on the other 
hand, are the main issues. 

In such standards there is no point performing 
software risk analysis, nor distinguishing the 
requirements related to functional safety. The point 
is appropriate formalization, refinement, design and 
implementation of the system requirements into 
software, whatever they are. 

The distinction between safety-oriented or 
assurance-oriented software standards correlates to 
some extent with the means-oriented vs. objective-
oriented characterization, and with product-oriented 
(safety-case) vs. process-oriented argumentation. 
Safety-oriented standards are more inclined to 
prescription of means, and means prescriptive 
standards explicitly state where formal methods 
(FMs) have to be applied while process oriented 
standards leave more options open as to the 
acceptable means. 

In the sequel, the discussion is limited to what 
concerns highest criticality software (DAL A, ASIL D, 
SIL 4, Class 1). In table 2, the specification (resp. 
implementation) refinement and correctness 
columns encompass development and verification 
activities. Correctness at specification level means 
verifying specification properties, for instance 

consistency, uniqueness (non ambiguity), 
completeness or conformance w.r.t. formalized 
system requirements. Correctness at implementation 
level is meant as conformance of software behaviour 
against the specification. 

Table 2 shows the positioning of the standards w.r.t. 
formal methods: may or should they be used, and 
where? 

Domain Specifcation 
Refinement & 
Correctness 

Implementation 
Refinement & 
Correctness 

Aeronautic Applicable Partially Applicable 

Automotive Applicable Applicable 

Nuclear Encouraged Applicable 

Process Recommended Recommended 

Railway Recommended Recommended 

Space Applicable Applicable 

Table 2: Applicability of Formal Methods 

The railway standard is the more inclined to formal 
methods as they are highly recommended for SIL3, 
in other words they are mandatory at specification, 
implementation and verification stages. French 
railway industry even developed a correct-by-
construction technology where these steps are 
intertwined in a formally proven refinement process. 

Automotive and process industry also promote 
formal methods, but for cost-effectiveness reasons 
they keep from making them mandatory. 

Aeronautic and space do not prescribe any mean, 
even those that showed evidence of benefit for 
safety critical software. The new DO-333 provides 
guidance for using formal methods (cf. section 3), 
but it does not mean that they are recommended. It 
is now easier to have them accepted as means of 
compliance by airworthiness authorities. 

In space like in aeronautics, testing is required for 
some verification activities (e.g., hardware/software 
integration testing in DO 178C). 

3. Formal methods and testing: a domain wise 
survey 

When formal methods are recommended or 
acknowledged as acceptable means of compliance, 
joint use of static analysis and testing is not specified 
in detail. It is implicitly assumed that a given type of 
properties is addressed either by testing of by formal 
methods but not both.  



3.1. Aeronautics 

3.1.1. Highlights on the formal methods technical 
supplement (ED-216/DO-333) 

This supplement of DO-178C enables the use of 
formal methods in place of conventional methods by 
providing guidance on how to use them, by 
modifying existing objectives, by defining new 
objectives, and by describing the needed activities to 
meet the objectives. It also describes what evidence 
must be provided by the activities, gives information 
on the fundamentals of Formal Methods, and deals 
with characteristics proper to Formal Methods. 

This supplement is applicable only when credit is 
sought from formal method to reach verification 
objectives. Formal methods are defined as 
descriptive notations and analytical methods used to 
construct, develop and reason about mathematical 
models of system or software. 

This supplement is based on some definitions: 
• A formal method is a formal analysis carried out 

on a formal model, 
• A model is an abstract representation of a given 

set of aspects of a system or software that is 
used for analysis, simulation, code generation, or 
any combination thereof, 

• A formal model is based on a formal notation, 
• A formal notation has a precise, unambiguous, 

mathematically defined syntax and semantics. 

In the scope of this supplement, formal analysis is 
the use of mathematical reasoning to guarantee that 
properties are always satisfied by a formal model.. 

After defining what could be considered as formal, 
this supplement describes where formal analysis 
could be used. Formal Analysis might replace: 
• Review and analysis objectives 
• Conformance tests versus HLR & LLR 
• Robustness tests 

Formal Analysis might help for verification of 
compatibility with the hardware. But formal analysis 
cannot replace HW/SW integration tests. Therefore 
HW/SW integration testing is still needed. 

Where formal verification is used to replace testing 
activities, the former structural coverage objectives 
are superseded by new objectives stated by the 
standard, that aim to demonstrate that: 
• Each requirement is completely covered 
• The set of requirements is complete with respect 

to the intended functions 
• There is no non expected dependencies between 

output and input data 
• There is no dead code. 

3.1.2. Field experience and feedback 

At Airbus since 2001, a group has been transferring 
formal verification technology – tools and associated 
methods – from research projects to operational 
teams who develop avionics software.  

The technology for verifying non-functional 
properties (such as stack analysis, worst case 
execution time assessment, absence of run-time 
errors, floating point accuracy) is not seen as an 
alternative to testing and will not be discussed here.  

We focus instead on the technique of unit proof that 
we developed for verifying functional properties. This 
has replaced some of the testing activities for parts 
of critical embedded software on the A400M military 
aircraft and the A380 and A350 commercial aircraft.  

Within the classical V-cycle development process of 
most safety-critical avionics programs, we use the 
technique of unit proof for achieving DO-178 
objectives related to verifying that the executable 
code meets the functional LLRs. The term “unit 
proof” echoes the name of the classical technique it 
replaces: unit testing. Since 2002, this approach has 
been used industrially. It departed from the DO-178B 
standard (more accurately, it was treated as an 
alternative method of compliance), and therefore we 
worked with the certification authorities to address 
and authorize this alternative. The new DO-178C 
standard, together with the formal methods 
supplement DO-333, fully support the use of unit 
proof.  

Unit proof is basically a three-step process. 
1 LLRs are expressed formally as dataflow 

constraints between the inputs and outputs of a 
computation, and as contracts (pre- and post-
conditions) in first order logic, during the detailed 
design activity of the development process.  

2 A module is written to implement the desired 
functionality (this is the classical coding activity). 
The C language is used for this purpose. 

3 The formal requirements of the C module and the 
module itself are given to a proof tool. This 
activity is performed for each C function of each 
C module. 

As usual when performing a verification activity at 
source level instead of binary level, we perform an 
analysis of the object code generated by the 
compiler, including the effects of the compiler 
options on the object code, to substantiate that the 
compiler preserves in the object code the property 
proved on the source code. Note that within this 
development cycle the HLRs are expressed 
informally, so the verification of integration is done 
by testing. Overall, the technique of unit proof 
reduces the overall effort compared to unit testing, in 
particular because it facilitates maintenance. 



This approach satisfies the four alternative 
objectives to structural coverage analysis stated in 
DO-333: 
• COVER - Each requirement is expressed as a 

property, each property is formally proved, and 
each assumption made for formal verification is 
verified. 

• COMPLETE - Completeness of the set of 
requirements is verified through the following 
elements: 

a The verification of dataflow gives evidence 
that the data used by the source code is 
conformant with decisions made during 
design.  

b Based on this guarantee, the theorem 
proving tool is used to verify that the formal 
contract defined in the design phase 
specifies a behavior for all possible inputs. 

c We verify by manual review of the formal 
contracts that they are accurate and specify 
the value of each output for each execution 
condition. 

• DATAFLOW - The dataflow verification gives 
evidence that the operands used by the source 
code are those defined at design level.  

• EXTRANEOUS - Except for unreachable code 
(which cannot be executed), all the executable 
code is formally verified against the LLRs. Thus, 
the completeness of the properties and the 
exhaustiveness of formal proof guarantee that 
any code section that can be executed will have 
no other impact on the results of the function than 
the one specified in the LLRs. Identification of 
unreachable code, including dead code, is 
achieved by an independent focused manual 
review of the source code. 

At Dassault Aviation formal methods have been 
used on production integrated software since 2000, 
in the military domain as in the civil domain, but 
without certification credit.  

Contrary to Airbus, FMs are not used to replace 
testing activities, but to perform new verifications or 
to support manual analyses. Model-checking on 
finite state modules, and abstract interpretation 
intertwined with theorem proving for RTE detection 
and robustness analysis are the main use cases [4]. 

Testing is used jointly with abstract interpretation 
and theorem proving to locally speed-up the 
verification process. 

3.2. Automotive 
3.2.1. Requirements and recommendations of the 

standard 

In the ISO 26262 the formal verification is defined as 
a method used to prove the correctness against the 

specification in formal notation. Two other formalism 
levels are defined: informal and semi-formal 
(semantics definition can be incomplete, but syntax 
is completely defined). 

Formal verification is cited twice for software as a 
method for:  
• verification of the software architectural design,  
• verification of the software unit design and 

implementation  

These activities are in the left part of the software V-
Cycle represented in Figure 1. 

 
Figure 1: reference phase model for the software 

development defined in the ISO 26262 

In both cases, formal verification is considered as an 
alternative or a complement to other static 
verification methods such as control and data flow 
analysis or design reviews. 

There is no recommendation of FM for low ASIL and 
when they are recommended, for high ASIL, they are 
always presented as alternative or complementary to 
other methods that are highly recommended. This 
means that either you don’t use formal methods or 
you use them as a complement or you have to 
demonstrate that they can replace other static 
verification methods. In other words, the standard 
does not promote the use of formal methods. 

In the same table detailing the methods for 
verification of the software unit and implementation 
we can also consider as a “formal verification 
method” the “semantic code analysis” which is 
described in a note as performing mathematical 
analysis of source code by use of an abstract 
representation of possible values for the variables.  

To complete the picture about static verification at 
software unit design and implementation level, the 
static code analysis is highly recommended from 
ASIL C (verification of rules like MISRA C).  

Concerning the testing activities, the standard 
classically requires unit testing, integration testing, 
and testing of the integrated software on the target 
hardware as represented in the right part of the V-
Cycle in Figure 1.  



Formal methods are not considered as alternative or 
complementary to test activities meaning that they 
are only considered in the left part of the software V-
cycle. 

3.3. Field experience and feedback 

In the automotive field, the usage of formal 
languages is not a common practice and in 
consequence formal verification cannot today be 
considered as state of the art in this industry.  

Verification of coding rules supported by tools is now 
a common practise. The most popular set of rules is 
the MISRA-C coding rules (since 1998). 

Static verification using abstract interpretation for 
verification of the absence of RTE is also a widely 
applied practise. In some cases, a high number of 
potential errors for which the tool could not 
determine if it was a real error or just a warning, has 
led to some reluctance for the usage in the context 
of the industrial resource constrained projects. More 
precisely, the inaccuracy of the tool results obliged to 
perform manual verification. When the amount of 
verification to be performed manually increases, the 
confidence in finding the issues decreases. Progress 
made on the process and the tools (and its 
configuration) tend to overcome this issue.  

Beyond the detection of RTE, the usage of formal 
verification and furthermore its possible combination 
with dynamic verification methods, are still mainly 
confined to the advance engineering teams.  

3.4. Nuclear 
3.4.1. Guidelines of the standards 

In the nuclear filed, formal methods are not yet 
mandatory, except in very specific cases such as 
Static Timing Analysis for programmable electronics. 
Regarding pure software, the standards require the 
verification plan to include activities based on source 
code analysis and test.  

Regarding design, the standards consider 
specifically the case of application-oriented 
languages associated with “code generators”, and 
provide specific guidance for this case. In practice, 
this leads to a significant reduction in unit verification 
effort, provided the language and code generators 
comply with the requirements of the standard. 

Regarding verification and validation, the standards 
provide extensive guidance about testing methods 
for historical reasons, but mainly under the form of 
recommendations (“should”) rather than 
requirements (“shall”); thus other means such as 
formal methods are acceptable too, provided their 
suitability is demonstrated. Finally, the integration 
and mostly validation phases must include extensive 

testing, but other verification activities may be based 
on testing and/or formal proofs. 

The standards do not promote a particular method or 
tool, but require the verification plan to demonstrate 
the adequacy of the overall verification strategy, and 
this demonstration is considered as highly important 
by the regulators. Thus the domain is ready to take 
benefit from the progress made in formal methods, 
for example tools for static detection of Run Time 
Errors (RTE) such as “divide by zero” are now used 
in practice, provided they are sound and complete 
(i.e. all possible RTE will be detected); another 
example is the use of static stack analyzers based 
on abstract interpretation to prove the correctness of 
stack sizing. 

3.4.2. Field experience and feedback 

In the nuclear field, application-oriented languages 
and associated code generators have been used 
since the end of the 1980s, especially with tools 
based on the formal language Lustre. The feedback 
of experience is actually very positive both in terms 
of development effort and confidence in the resulting 
object. An important success factor is certainly the 
graphical tools which encapsulate the formal 
language, preserving its formal properties while 
providing the user with familiar constructs and 
elementary objects. This feature helps the project 
participants (such as process engineers, system 
designers, software specialists) to understand each 
other. 

Regarding verification activities, the experience of 
formal tools is not yet so wide, but this approach has 
already demonstrated at least results as good as 
testing in cases such as RTE detection and stack 
analysis. Active applied research is in progress to 
extend their application to structural properties (e.g. 
proving that the behaviour of the system software 
cannot be influenced by the application software) 
and functional properties, with very encouraging 
results. 

Tool qualification may be reached by application to 
its development of the requirements applicable to the 
target software. Otherwise, it is based on the way 
the tool is used (can it introduce faults, fail to reveal 
faults, etc.), on its development process, and on the 
feedback of experience. 

3.5. Process and Manufacturing 
3.5.1. Formal methods and tests in the standards 

IEC 61508, IEC 61511 and IEC 62061: 

A distinction has to done between the base standard 
(IEC 61508) and the application sectors standards 
(IEC 61511 and IEC 62061). The sector standards 
focus on the realisation of safety critical functions 
based on the use of IEC 61508 compliant devices. 



This means that they focus on the coding of 
application specific programs and not on lower levels 
such as electronics, operating software and 
language issues. Formal methods and tests are not 
mandated nor recommended in the application 
sector standards. It is however expected to see an 
emergence of guidance focused on Model Based 
Design with an opening towards formal proof in the 
next release of IEC 61511. IEC 61508 recommends 
and highly recommends, i.e. mandates, formal 
methods and tests for SIL 3 and SIL 4 criticality level 
requirements for some activities of the safety life 
cycle. 

3.5.2. State of the art in these industries: 

The status of the use of tests and formal methods in 
the process industries and manufacturing industries 
varies much according to the actors. The variability 
is based on the academic background of the 
different stakeholders. The end-users don't have the 
teams to adress formal methods. This is not directly 
required by the regulatory bodies that inspect the 
machines or the plants. So they don't see the benefit 
and the need, except in some very large companies 
such as Oil and Gas industries having a centralised 
R&D team. In this case, formal methods are used at 
R&D level to anlyse particular architectures and to 
standardise them. But the formal method culture 
does not percolate down to the plants. The system 
integrators usually don't have access to this 
technology as well. It is not a clear direct 
requirement of their customers. The manufacturers 
of safety products such as safety Programmable 
Logic Controllers, or Smart Instruments, are 
supposed to have the suitable engineers within their 
team. But there is little visibility through literature, 
communications, as well as through third party tests, 
on regular activity concerning formal methods within 
the major players. 

3.6. Railway 
3.6.1. Guidelines of the standards 

Since the first version of the standard CENELEC EN 
50128 in 2001, formal methods have been 
introduced and highly recommended. In the new 
version of the standard (2011), the V-cycle is 
recommended and testing is the basic verification 
technique. But from specification to design it is 
possible to use formal methods.  

The standard introduced the possibility to use the 
formal techniques (proof, model-checking, etc.) in 
place of tests. For verification, one can choose a 
combination of techniques. The standard proposes 
some best choices and if one decides to introduce a 
new combination one must explain why it is a good 
choice and why the proposed set of techniques has 
the same efficiency. Each time formal methods 

and/or formal techniques are used one must explain 
why the efficiency (for some error classes) is similar. 

In railway, formal methods are used more and more 
and at different levels: specification, architecture, 
design, in replacement of unit tests and of 
software/software integration test, in data 
preparation, etc. 

3.6.2. Field experience and feedback 

Actually, in all railway projects model-based 
development and verification is used at different 
levels (system, software, complete software or for 
some specific functions), supported by SCADE, 
CONTROL-BUILD, or B-Method. For some projects, 
proof of properties is applied with some reduction of 
testing activities. 

The most frequent and extensive used of proof in 
replacement of testing activities is related to data 
validation. Railway software includes a lot of data 
and configurations of data. Proof techniques turned 
out to be most efficient to data verification. 

3.7. Space 
3.7.1. Guidelines of the standards 

  In European space the applicable standards are 
the series of standards from ECSS, European 
Cooperation for Space Standardization and in 
particular for software, the software engineering 
standard ECSS-E-ST-40C and the software product 
assurance standard ECSS-Q-ST-80C. As a 
summary one can say that formal methods are 
recognized as possible means to support software 
development and validation and their justification. In 
particular for the highest two criticality categories 
(so-called “safety-critical software”) it is required to 
develop “a logical model” of the software, including a 
behavioral view using automata, and “an analyzable 
computational model’, and their verification. It is also 
indicated that for the highest three categories (so-
called “critical software”), measures can include 
“formal design language for formal proof”. However 
in more general terms it is indicated that verification 
is based on a combination of testing and analysis 
(including reviews and inspections) and that the 
strategy for verification (including the intended 
combination and its justification) must be 
documented and justified. In usual practice, this 
generally means that the verification baseline is 
primarily through testing, possibly complemented by 
“analysis” (not necessarily and not usually formal 
proofs) when testing is not possible for some reason 
to justify. In particular one can note that testing is 
mandatory, up to structural coverage criteria varying 
according to the criticality category, not mentioning 
the ability to use formal methods as alternate means. 



3.7.2. Field experience and feedback 

In European space projects, applicable ECSS 
standards are always detailed, tailored and 
complemented under the form of specific 
requirements applicable to the project, also taking 
into account industry specific processes and 
practice, and research and development studies. 

In this respect one should note an increasing 
importance of formal methods. However the major 
focus is more on model-based software engineering 
(and associated tool support in particular integrated 
development environment) rather than specifically on 
formal proofs even though in practice this is also 
covered through the progressive (formal) verification 
of modelling steps and formal model transformation 
techniques down to automatic code generation. 

Acquired experience in advanced studies, is 
progressively introduced in operational practice even 
though this one remains nowadays somehow limited 
apart noticeable usage of static analysis for run-time 
errors, generation of code e.g., from mathematical 
models of control laws, or formal analysis of some 
specific critical behaviors (e.g., an initialization or 
deployment sequence for a complex spacecraft). 

4. A cross-domain analysis of verification 
coverage 

Little is said in the reviewed standards about joint 
use of testing and formal verification. In the recent 
DO-333, the approach is a split and cumulative 
policy: applicability of the core document on the 
testing part, applicability of DO-333 on the FM part. 
In case of FM-testing mix, both sets of objectives are 
to be met. 

In this section, of more prospective nature, a cross-
domain rationale of verification coverage is explored, 
keeping in mind three kinds of FM-Testing mix: 
• Partitioning: testing and FM are used on different 

verification activities, they never overlap, 
• Substitution: some tests are no longer performed, 

they are replaced by formal verification, on the 
whole activity, 

• Weaving: FM and test are used on the same 
integrated verification activity. FM is the baseline, 
testing is used here and there to trade coverage 
against cost-effectiveness on time consuming 
proofs [4]. 

All standards resort to structural coverage analysis 
as a DAL-dependent testing completion criterion. 
The higher the criticality, the greater the structural 
coverage. It plays the role of rigor metrics, but little 
information is given on the rationale linking 
“structural coverage” to “verification coverage”. 

What is verification coverage? How does structural 
coverage contribute to verification coverage? Is its 
contribution proper to testing or relevant for formal 
methods as well? 

DO-178 is the only one of the six standards to 
emphasize three added values of structural 
coverage analysis, as achieved by specification-
based2 testing (Figure 2): 

1. detection of some missing test cases to 
verify a requirement, 

2. detection of some missing requirement, 
3. detection of the code deactivated or 

potentially non reachable (so-called "dead 
code"). “Dead code” has to be chased as 
potential source of unintended functions. 

 
Figure 2: Cross-domain rationale of verification 

coverage derived from DO-178 

This detection is not claimed to be complete. It is 
regarded as a valuable enabler worth the high cost 
of high coverage ratios (e.g. MC/DC 100%).  

In this rationale that stemmed from testing, what 
would be superseded by Formal Methods? 

FMs solve issue 1. It may be argued that structural 
coverage analysis is not proper to testing because it 
is an enabler of specification completeness (issue 2 
and 3) and specification completeness is key in 
specification-based verification as required by DO-
178, ECSS-Q-ST-8OC, IEC 60880, EN 50128 and 
by ISO 26262 to some extent. 

Figure 3 attempts to illustrate, in the behavioural 
space, the issue of unintended function detection. It 
applies to the integrated software and its actual 
execution environment (hardware, system, and the 
system's physical and human environment). The 
behavioural space is the infinite set of MIMO I/O 
(Multiple Inputs Multiple Outputs) traces that are 
observed at development time, and may be 
observed at operation time. Each point of the 2D 

                                                      
2 Named requirement-based testing in DO-178 



figure represents a black box observation at the 
software boundaries, for a domain-dependent 
duration (hours for transportation, days, months or 
years for energy, process and space). 

 

Figure 3: conceptual representation of three kinds of 
unintended functions 

Economic constraints tend to: 
• minimize the development-time (a few months or 

years) and the number of system verifiers (a few 
tens to hundreds), 

• maximize the operation-time (decades) and the 
number of system users (thousands, millions or 
more) 

The behavioural part of verification coverage could 
be intuitively defined as the proportion of operation-
time behavioural space that was explored by the 
verification activities at development time.  

The economic min-max duality, common to all 
domains but with significant and regulation 
dependent variability, is source of unbalance 
between the respective sizes of these two 
behavioural spaces. Likelihood of occurrence of 
unintended functions at operation time is 
proportionate to this unbalance.  

Property space is the second component of 
verification coverage. Property coverage could be 
defined (loosely again, and independently of any 
tractability consideration) as the ratio of user-
expected properties actually formalized at 
development time into test oracles or FM artefacts.  

Correctness, used mainly in FM, is behavioural 
conformance with the explicit properties. The 
properties that are needed but remain implicit are the 
second source of unintended functions. FM and 
Testing are equally powerless to verify these 
properties, as both need computable predicates over 
concrete or abstract values. 

In figure 3, Acceptable vs. Unacceptable is used in 
the implicit part of the property space to distinguish 

from Correct vs. Incorrect in the explicit part (green / 
red and transparent / dense). 

As mentioned previously, most of the standards 
advocate specification-based verification and use 
structural coverage as a termination criterion. Fewer 
recommend non activated code analysis. DO-178 
and ECSS-Q80 are singular in requiring dead code 
removal. 

The implicit vs. explicit partitioning of the property 
space is not represented in figure 4. It should lead to 
a two-layered validity mapping on the whole 
unfolded behavioural space, i.e. a 3D figure 3. Each 
point has a dense and a transparent colour (green if 
all the properties of the specification are satisfied, 
red if any is not satisfied).  

A hopefully insightful though possibly misleading 
partitioned fusion of the two status layers was 
introduced in Figure 3. The sharp rectangular frontier 
between the statuses of implicit and explicit 
properties attempts to figure out the situation at the 
end of development time: 

I. All the explicitly specified properties have a 
status on the explored subset of the 
behavioural space. These statuses aggregate 
in a conformance status represented by each 
point's dense colour. 

II. The status of all the needed but still implicit 
properties (the forgotten additional 
specification) on that behavioural subset is 
accessible through “God’s eye view3” only. 
This second map lies underneath the dense 
one. 

III. So it is for the status of the explicit properties 
on the executions cases that lie outside of that 
subspace, and that may occur for the first time 
in operation. FMs help minimizing this 
additional behavioural space not covered by 
verification. 

This non covered behavioural space, that may exist 
even when using exhaustive verification means like 
FMs, is represented in a way commensurate to the 
min-max unbalance. Why? 

Neighbourhood in Figure 3's 2D symbolic 
representation of the high dimensional trace space is 
trace neighbourhood, i.e. behavioural proximity. Two 
close traces may occur at very different dates of 
development or operation time. Conversely two 
distant traces may occur in a row, the very same 
day.  

So, why suggesting that there is a link between 
behavioural space, usage intensity during operation, 

                                                      
3 As used e.g., in estimation theory for absolute or 
asymptotic knowledge. 



and verification coverage? Because of the role that 
the assumptions play in verification, by testing and 
even more so by formal methods. Behavioural 
properties (implicit and explicit) are of the form:  

condition(trace)=> constraint(trace) 

where the condition is a predicate mostly on inputs, 
and constraint a functional predicate constraining the 
output trace w.r.t. the input trace. When the condition 
part is false the property's status is true because the 
constraint part of the property is not applicable in 
such an input context. The associated trace point is 
marked green on the map of explicit properties.  

Assumption tuning depends on tuning verification 
cost. Assumption coverage ratio4 depends on usage 
intensity at operation time. As the embedded system 
and its environment evolve over large periods of time 
and under stress of even larger user populations, the 
likelihood of still meeting all the assumptions made 
at development time is likely to drop. 

The role of assumptions is symbolized by the light 
grey zone in figure 3, suggesting some sort of 
shadow that may doom the specification validity 
map. DO-333 (§4.3, 6.2.1, 6.7.1) assigns dedicated 
objectives to ensure controlled use of assumptions. 

In spite of its acknowledged possibly misleading 
features, figure 3 attempts to depict three kinds of 
unintended functions (UFs): 

1. Specified property violation by a non-tested 
execution case. This first kind is addressed by 
formal methods' exhaustiveness, 

2. Specified property violation on parts of the 
operation-time behavioural space not included in 
the development-time behavioural space. 
Includes assumption coverage failure, 

3. Property emergence, in two cases: 
o  in the behavioural space covered by 

verification, an operation-time execution case 
“pops-up” a property left in the implicit part of 
the property space, that should have been 
formalized and verified, 

o same as before, but the triggering operational 
behaviour was not covered by verification. 

DO-178 and some other standards more or less 
aligned on the same verification rationale 
(specification-based testing or analysis prior to 
structural coverage analysis), advocate a 
contribution to unintended function detection. On 
which kind of unintended functions? 

Structural Coverage Analysis is an enabler for kind 
1: the non activated parts of the structure may, once 
activated, violate some explicit properties. It may be 

                                                      
4 Probability of assumption violation in operation 

an enabler for kind 2 if the non activated parts of the 
structure suggest valid weaker conditions on inputs 
that would activate them. Kind 3 may be regarded as 
the case of specification completeness explicitly at 
stake in section 6.7 of DO-333. 

So Structural Coverage Analysis is neither direct nor 
complete for UF detection. It provides so to speak 
another viewpoint on the behavioural space covered 
by testing, an inner view on it. Admittedly, 
confronting two different views, the outer functional 
and the inner structural, on the same complex object 
may help to grasp it. In addition, it may also have 
positive side-effects on the position of the 
implicit/explicit frontier in the property space. 
Structural Coverage Analysis contributes to the two 
components of verification coverage. 

5. Structural coverage in joint use of FM and 
testing 

Should then Structural Coverage Analysis be 
extended to FM verification because a significant 
part of its value is not specific to testing? 

Structural Coverage Analysis is costly and indirect in 
its effects. Moreover, introducing structural coverage 
analysis in static analysis tools would face some 
serious difficulties: 
• Set-based accessibility analysis in code or model 

structures would have to be exact, which is either 
undecidable, or NP-hard, i.e. intractable. 

• Cumulating the coverage metrics over different 
static analysis tools and testing tools would be 
exceedingly difficult, 

• Qualifying the correctness of such hybrid 
structural coverage analysis tools would be at 
best very expensive, and at worst not convincing.  

Since detection of type-2 (assumption violation) and 
type-3 (property emergence) unintended functions is 
the benefit of Structural Coverage Analysis to be 
preserved whatever verification method is used, why 
not looking for means directly aimed at these 
detections? FM and testing can both help detecting 
these types of unintended functions, i.e. check the 
assumptions on enlarged behavioural spaces, and 
foster property emergence. 

FMs offer means to formally verify properties on the 
explicit (and formalized) part of specifications. As 
formalization foster both ambiguity removal and 
completeness, proving properties on the 
specification would enhance this property 
emergence effect. Double independent formalization 
of the specification, with or without proof of 
equivalence of the two different formulations, would 
be another property emergence enabler. Definitely 
more costly, it would probably also be more efficient 
than proving properties of properties. 



The previous two methods foster the detection of 
unintended functions in the property space 
component of verification coverage, as FM can 
compute in this space. The third and last one is 
exploratory testing. Exploratory testing is akin to 
validation testing: it is oracle-free testing, a more 
"free-style" and user centric exploration of software 
behaviour, looking for behavioural oddities or worse. 
Since there is no or fewer plans, no or fewer oracles, 
there is less opportunity for mind biased by 
assumptions and specified properties. Exploratory 
testing operates on the behavioural space. It was 
represented on figure 3 as two arrows orthogonal to 
that of specification-based verification. Specification-
less is orthogonal to specification-based. 

Already extensively practiced in the six industrial 
domains at system validation stage, could a cross-
domain rationale trading less structural coverage 
against more exploratory tests be elaborated? Like 
stress testing of physical equipments that for 
instance manage to exercise a 10-year lifespan in a 
1-month stress-test campaign, might the same 
approach be attempted to explore a larger part of the 
behavioural space?  

New means may be considered in this respect, 
though linear CPU time increase faces exponentials: 

1. Serious gaming environments. They would 
make the software accessible through 
affordable on-line high accuracy operational 
environments, to a larger group of beta testers, 

2. Usage-driven (machine learning on previous 
developments) stochastic testing on HPC 
facilities. 

6. Conclusion and perspectives 

There is a wide range of guidelines in the reviewed 
standards regarding testing, formal methods and 
verification coverage. Practice known to the authors 
varies a lot as well, but consistently with the 
standards, except in process industry where practice 
lags behind regulatory guidelines. 

Railway, more recently Aeronautics, and to some 
extent Nuclear, are the three industrial domains 
where using formal methods, alone or jointly with 
testing, is effective in production software 
development. In case of joint use, three modes of 
combination may be considered, depending on 
whether one partitions, substitutes or intertwines the 
two verification means.  

The paper reviewed some high level principles of the 
standards in their way to address safety, and then 
proceeded to greater detail on the six industrial 
domains separately. The last part, more conceptual, 
is a tentative framework to analyse verification 
coverage in a cross-domain way, applicable to FM 

and testing, to software and system. It figured out 
why structural coverage analysis may be regarded 
as not proper to testing but not worth the pain of 
being extended to FM. 

Alternative and more direct means to address 
detection of unintended functions have been 
proposed FM-verification of the specification, double 
independent specification, and enhanced exploratory 
testing. They help improve, hopefully as effectively 
as structural coverage, property coverage and 
assumption coverage, two components of 
verification coverage that condition existence of 
unintended functions.  
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