
Joint use of static and dynamic software verification techniques: a cross-domain view
in safety critical system industries

Emmanuel Ledinot(1), Jean-Paul Blanquart(2), Jean-Marc Astruc(3), Philippe Baufreton(4), Jean-Louis Boulanger(5),
Cyrille Comar(6), Hervé Delseny(7), Jean Gassino(8), Michel Leeman(9),Philippe Quéré(10), Bertarnd Ricque(4)

(1) Contact author, Dassault Aviation, emmanuel.ledinot@dassault-aviation.com ;

(2) Astrium Satellites (3): Continental; (4): Sagem Défense Sécurité; (5): CERTIFER; (6) AdaCore;

(7): Airbus; (8): Institut de Radioprotection et de Sûreté Nucléaire; (9): Valeo; (10): Renault.

Abstract:
How different are the approaches to combining
formal methods (FM) and testing in the safety
standards of the automotive, aeronautic, nuclear,
process, railway and space industries? This is the
question addressed in this paper by a cross-domain
group of experts involved in the revision committees
of ISO 26262, DO-178C, IEC 60880, IEC 61508, EN
50128 and ECSS-Q-ST-8OC.

First we review some commonalities and differences
regarding application of formal methods in the
aforementioned standards. Are they mandatory or
recommended only? What kind of properties are
they advised to be applied to? What is specified in
the different standards regarding coverage (both
functional and structural) if testing and formal
methods are used jointly?

We also account for the return on experience of the
group members in the six industrial domains
regarding state of the art practice of joint use of
formal methods and testing. Where did formal
methods actually prove to outperform testing?

Then we discuss verification coverage, and more
specifically the role of structural coverage. Does
structural coverage play the same role in all the
standards? Is it specific to testing and irrelevant for
formal methods? What verification termination
criteria is applicable in case FM-test mix?

We conclude on some prospective views on how
software safety standards may evolve to maximize
the benefits of joint use of dynamic (testing) and
static (FM) verification methods.

Keywords: Safety standards, cross-domain
comparison, software verification, formal methods,
tests, coverage.

1. Introduction

While testing has for long been one of the major
software verification means, the so-called static
analysis methods have been gaining momentum
since the early 2000s. They differ from dynamic
analysis such as testing in the sense that they do not
require actual execution of the code.

Static verification techniques include model
checking, abstract interpretation and theorem
proving. They perform symbolic computation on
source code taking into account all the execution
cases, but possibly even more.1. On this issue of
exhaustiveness w.r.t. execution cases, dynamic and
static software verification techniques are commonly
and duly opposed to one another since the former
samples software correctness, whereas the latter
guarantees conformance to the formalized
specification for the analyzed properties.

But from usage perspective, there is no point
opposing static and dynamic techniques. As
experienced in various safety related industrial
domains and as even reflected in some of their
software safety standards, joint use of testing and
formal methods is beneficial and gaining adoption by
software practitioners.

Joint use of testing and static analysis in six software
safety standards (ISO 26262, DO-178C, IEC 60880,
IEC 61508, EN 50128 and ECSS-Q-ST-8OC) is the
issue addressed by the group who co-authored this
paper. This group, formerly named CG2E group [1]
is now affiliated to SYNTEC Informatique as part of
Embedded France. After reviewing the main
commonalities and differences between the six
verification policies, we give an account on standard
per standard basis. Finally we explore the role of
structural coverage analysis, as a key verification
activity to address when using FM and testing jointly.

2. Variability of approaches to verification

Before focusing on verification mix and the
associated coverage issues, we first review high
level differences between the standards that are
noticeable at process level.

The six industrial domains may be split into two
groups, depending on whether their respective
software dependability standard is mainly a safety
standard or a development assurance standard.

1 Some additional impossible execution cases
because of outer-approximation in set-based
analysis.

mailto:jean-paul.blanquart@astrium.eads.net

The point at stake is the existence, or not, of a
specific software level risk analysis (product and
process). ISO26262, IEC 61508, EN 50128 require a
software level hazard analysis to be performed. They
also isolate the safety-related software requirements
from the other requirements and ask for higher rigor
in the way they are addressed.

Domain Standard Rationale

Aeronautic DO-178 Development
Assurance

Automotive ISO 26262 Safety Standard

Nuclear IEC 60880 Development
Assurance

Process IEC 61508 Safety Standard

Railway EN 50128 Safety Standard

Space ECSS-QST-80C Development
Assurance

Table 1: Overall orientation of the standards

To the opposite, aeronautic, space and nuclear
consider safety exclusively at system level. The
system level safety functions are allocated to the
software units, and they have then to be
implemented in a correct way. Conformance with
these allocated system requirements i.e. ensuring
accuracy and completeness of the software
specification on the one hand, and correctness of the
implementation against the specification on the other
hand, are the main issues.

In such standards there is no point performing
software risk analysis, nor distinguishing the
requirements related to functional safety. The point
is appropriate formalization, refinement, design and
implementation of the system requirements into
software, whatever they are.

The distinction between safety-oriented or
assurance-oriented software standards correlates to
some extent with the means-oriented vs. objective-
oriented characterization, and with product-oriented
(safety-case) vs. process-oriented argumentation.
Safety-oriented standards are more inclined to
prescription of means, and means prescriptive
standards explicitly state where formal methods
(FMs) have to be applied while process oriented
standards leave more options open as to the
acceptable means.

In the sequel, the discussion is limited to what
concerns highest criticality software (DAL A, ASIL D,
SIL 4, Class 1). In table 2, the specification (resp.
implementation) refinement and correctness
columns encompass development and verification
activities. Correctness at specification level means
verifying specification properties, for instance

consistency, uniqueness (non ambiguity),
completeness or conformance w.r.t. formalized
system requirements. Correctness at implementation
level is meant as conformance of software behaviour
against the specification.

Table 2 shows the positioning of the standards w.r.t.
formal methods: may or should they be used, and
where?

Domain Specifcation
Refinement &
Correctness

Implementation
Refinement &
Correctness

Aeronautic Applicable Partially Applicable

Automotive Applicable Applicable

Nuclear Encouraged Applicable

Process Recommended Recommended

Railway Recommended Recommended

Space Applicable Applicable

Table 2: Applicability of Formal Methods

The railway standard is the more inclined to formal
methods as they are highly recommended for SIL3,
in other words they are mandatory at specification,
implementation and verification stages. French
railway industry even developed a correct-by-
construction technology where these steps are
intertwined in a formally proven refinement process.

Automotive and process industry also promote
formal methods, but for cost-effectiveness reasons
they keep from making them mandatory.

Aeronautic and space do not prescribe any mean,
even those that showed evidence of benefit for
safety critical software. The new DO-333 provides
guidance for using formal methods (cf. section 3),
but it does not mean that they are recommended. It
is now easier to have them accepted as means of
compliance by airworthiness authorities.

In space like in aeronautics, testing is required for
some verification activities (e.g., hardware/software
integration testing in DO 178C).

3. Formal methods and testing: a domain wise
survey

When formal methods are recommended or
acknowledged as acceptable means of compliance,
joint use of static analysis and testing is not specified
in detail. It is implicitly assumed that a given type of
properties is addressed either by testing of by formal
methods but not both.

3.1. Aeronautics

3.1.1. Highlights on the formal methods technical
supplement (ED-216/DO-333)

This supplement of DO-178C enables the use of
formal methods in place of conventional methods by
providing guidance on how to use them, by
modifying existing objectives, by defining new
objectives, and by describing the needed activities to
meet the objectives. It also describes what evidence
must be provided by the activities, gives information
on the fundamentals of Formal Methods, and deals
with characteristics proper to Formal Methods.

This supplement is applicable only when credit is
sought from formal method to reach verification
objectives. Formal methods are defined as
descriptive notations and analytical methods used to
construct, develop and reason about mathematical
models of system or software.

This supplement is based on some definitions:
• A formal method is a formal analysis carried out

on a formal model,
• A model is an abstract representation of a given

set of aspects of a system or software that is
used for analysis, simulation, code generation, or
any combination thereof,

• A formal model is based on a formal notation,
• A formal notation has a precise, unambiguous,

mathematically defined syntax and semantics.

In the scope of this supplement, formal analysis is
the use of mathematical reasoning to guarantee that
properties are always satisfied by a formal model..

After defining what could be considered as formal,
this supplement describes where formal analysis
could be used. Formal Analysis might replace:
• Review and analysis objectives
• Conformance tests versus HLR & LLR
• Robustness tests

Formal Analysis might help for verification of
compatibility with the hardware. But formal analysis
cannot replace HW/SW integration tests. Therefore
HW/SW integration testing is still needed.

Where formal verification is used to replace testing
activities, the former structural coverage objectives
are superseded by new objectives stated by the
standard, that aim to demonstrate that:
• Each requirement is completely covered
• The set of requirements is complete with respect

to the intended functions
• There is no non expected dependencies between

output and input data
• There is no dead code.

3.1.2. Field experience and feedback

At Airbus since 2001, a group has been transferring
formal verification technology – tools and associated
methods – from research projects to operational
teams who develop avionics software.

The technology for verifying non-functional
properties (such as stack analysis, worst case
execution time assessment, absence of run-time
errors, floating point accuracy) is not seen as an
alternative to testing and will not be discussed here.

We focus instead on the technique of unit proof that
we developed for verifying functional properties. This
has replaced some of the testing activities for parts
of critical embedded software on the A400M military
aircraft and the A380 and A350 commercial aircraft.

Within the classical V-cycle development process of
most safety-critical avionics programs, we use the
technique of unit proof for achieving DO-178
objectives related to verifying that the executable
code meets the functional LLRs. The term “unit
proof” echoes the name of the classical technique it
replaces: unit testing. Since 2002, this approach has
been used industrially. It departed from the DO-178B
standard (more accurately, it was treated as an
alternative method of compliance), and therefore we
worked with the certification authorities to address
and authorize this alternative. The new DO-178C
standard, together with the formal methods
supplement DO-333, fully support the use of unit
proof.

Unit proof is basically a three-step process.
1 LLRs are expressed formally as dataflow

constraints between the inputs and outputs of a
computation, and as contracts (pre- and post-
conditions) in first order logic, during the detailed
design activity of the development process.

2 A module is written to implement the desired
functionality (this is the classical coding activity).
The C language is used for this purpose.

3 The formal requirements of the C module and the
module itself are given to a proof tool. This
activity is performed for each C function of each
C module.

As usual when performing a verification activity at
source level instead of binary level, we perform an
analysis of the object code generated by the
compiler, including the effects of the compiler
options on the object code, to substantiate that the
compiler preserves in the object code the property
proved on the source code. Note that within this
development cycle the HLRs are expressed
informally, so the verification of integration is done
by testing. Overall, the technique of unit proof
reduces the overall effort compared to unit testing, in
particular because it facilitates maintenance.

This approach satisfies the four alternative
objectives to structural coverage analysis stated in
DO-333:
• COVER - Each requirement is expressed as a

property, each property is formally proved, and
each assumption made for formal verification is
verified.

• COMPLETE - Completeness of the set of
requirements is verified through the following
elements:

a The verification of dataflow gives evidence
that the data used by the source code is
conformant with decisions made during
design.

b Based on this guarantee, the theorem
proving tool is used to verify that the formal
contract defined in the design phase
specifies a behavior for all possible inputs.

c We verify by manual review of the formal
contracts that they are accurate and specify
the value of each output for each execution
condition.

• DATAFLOW - The dataflow verification gives
evidence that the operands used by the source
code are those defined at design level.

• EXTRANEOUS - Except for unreachable code
(which cannot be executed), all the executable
code is formally verified against the LLRs. Thus,
the completeness of the properties and the
exhaustiveness of formal proof guarantee that
any code section that can be executed will have
no other impact on the results of the function than
the one specified in the LLRs. Identification of
unreachable code, including dead code, is
achieved by an independent focused manual
review of the source code.

At Dassault Aviation formal methods have been
used on production integrated software since 2000,
in the military domain as in the civil domain, but
without certification credit.

Contrary to Airbus, FMs are not used to replace
testing activities, but to perform new verifications or
to support manual analyses. Model-checking on
finite state modules, and abstract interpretation
intertwined with theorem proving for RTE detection
and robustness analysis are the main use cases [4].

Testing is used jointly with abstract interpretation
and theorem proving to locally speed-up the
verification process.

3.2. Automotive
3.2.1. Requirements and recommendations of the

standard

In the ISO 26262 the formal verification is defined as
a method used to prove the correctness against the

specification in formal notation. Two other formalism
levels are defined: informal and semi-formal
(semantics definition can be incomplete, but syntax
is completely defined).

Formal verification is cited twice for software as a
method for:
• verification of the software architectural design,
• verification of the software unit design and

implementation

These activities are in the left part of the software V-
Cycle represented in Figure 1.

Figure 1: reference phase model for the software

development defined in the ISO 26262

In both cases, formal verification is considered as an
alternative or a complement to other static
verification methods such as control and data flow
analysis or design reviews.

There is no recommendation of FM for low ASIL and
when they are recommended, for high ASIL, they are
always presented as alternative or complementary to
other methods that are highly recommended. This
means that either you don’t use formal methods or
you use them as a complement or you have to
demonstrate that they can replace other static
verification methods. In other words, the standard
does not promote the use of formal methods.

In the same table detailing the methods for
verification of the software unit and implementation
we can also consider as a “formal verification
method” the “semantic code analysis” which is
described in a note as performing mathematical
analysis of source code by use of an abstract
representation of possible values for the variables.

To complete the picture about static verification at
software unit design and implementation level, the
static code analysis is highly recommended from
ASIL C (verification of rules like MISRA C).

Concerning the testing activities, the standard
classically requires unit testing, integration testing,
and testing of the integrated software on the target
hardware as represented in the right part of the V-
Cycle in Figure 1.

Formal methods are not considered as alternative or
complementary to test activities meaning that they
are only considered in the left part of the software V-
cycle.

3.3. Field experience and feedback

In the automotive field, the usage of formal
languages is not a common practice and in
consequence formal verification cannot today be
considered as state of the art in this industry.

Verification of coding rules supported by tools is now
a common practise. The most popular set of rules is
the MISRA-C coding rules (since 1998).

Static verification using abstract interpretation for
verification of the absence of RTE is also a widely
applied practise. In some cases, a high number of
potential errors for which the tool could not
determine if it was a real error or just a warning, has
led to some reluctance for the usage in the context
of the industrial resource constrained projects. More
precisely, the inaccuracy of the tool results obliged to
perform manual verification. When the amount of
verification to be performed manually increases, the
confidence in finding the issues decreases. Progress
made on the process and the tools (and its
configuration) tend to overcome this issue.

Beyond the detection of RTE, the usage of formal
verification and furthermore its possible combination
with dynamic verification methods, are still mainly
confined to the advance engineering teams.

3.4. Nuclear
3.4.1. Guidelines of the standards

In the nuclear filed, formal methods are not yet
mandatory, except in very specific cases such as
Static Timing Analysis for programmable electronics.
Regarding pure software, the standards require the
verification plan to include activities based on source
code analysis and test.

Regarding design, the standards consider
specifically the case of application-oriented
languages associated with “code generators”, and
provide specific guidance for this case. In practice,
this leads to a significant reduction in unit verification
effort, provided the language and code generators
comply with the requirements of the standard.

Regarding verification and validation, the standards
provide extensive guidance about testing methods
for historical reasons, but mainly under the form of
recommendations (“should”) rather than
requirements (“shall”); thus other means such as
formal methods are acceptable too, provided their
suitability is demonstrated. Finally, the integration
and mostly validation phases must include extensive

testing, but other verification activities may be based
on testing and/or formal proofs.

The standards do not promote a particular method or
tool, but require the verification plan to demonstrate
the adequacy of the overall verification strategy, and
this demonstration is considered as highly important
by the regulators. Thus the domain is ready to take
benefit from the progress made in formal methods,
for example tools for static detection of Run Time
Errors (RTE) such as “divide by zero” are now used
in practice, provided they are sound and complete
(i.e. all possible RTE will be detected); another
example is the use of static stack analyzers based
on abstract interpretation to prove the correctness of
stack sizing.

3.4.2. Field experience and feedback

In the nuclear field, application-oriented languages
and associated code generators have been used
since the end of the 1980s, especially with tools
based on the formal language Lustre. The feedback
of experience is actually very positive both in terms
of development effort and confidence in the resulting
object. An important success factor is certainly the
graphical tools which encapsulate the formal
language, preserving its formal properties while
providing the user with familiar constructs and
elementary objects. This feature helps the project
participants (such as process engineers, system
designers, software specialists) to understand each
other.

Regarding verification activities, the experience of
formal tools is not yet so wide, but this approach has
already demonstrated at least results as good as
testing in cases such as RTE detection and stack
analysis. Active applied research is in progress to
extend their application to structural properties (e.g.
proving that the behaviour of the system software
cannot be influenced by the application software)
and functional properties, with very encouraging
results.

Tool qualification may be reached by application to
its development of the requirements applicable to the
target software. Otherwise, it is based on the way
the tool is used (can it introduce faults, fail to reveal
faults, etc.), on its development process, and on the
feedback of experience.

3.5. Process and Manufacturing
3.5.1. Formal methods and tests in the standards

IEC 61508, IEC 61511 and IEC 62061:

A distinction has to done between the base standard
(IEC 61508) and the application sectors standards
(IEC 61511 and IEC 62061). The sector standards
focus on the realisation of safety critical functions
based on the use of IEC 61508 compliant devices.

This means that they focus on the coding of
application specific programs and not on lower levels
such as electronics, operating software and
language issues. Formal methods and tests are not
mandated nor recommended in the application
sector standards. It is however expected to see an
emergence of guidance focused on Model Based
Design with an opening towards formal proof in the
next release of IEC 61511. IEC 61508 recommends
and highly recommends, i.e. mandates, formal
methods and tests for SIL 3 and SIL 4 criticality level
requirements for some activities of the safety life
cycle.

3.5.2. State of the art in these industries:

The status of the use of tests and formal methods in
the process industries and manufacturing industries
varies much according to the actors. The variability
is based on the academic background of the
different stakeholders. The end-users don't have the
teams to adress formal methods. This is not directly
required by the regulatory bodies that inspect the
machines or the plants. So they don't see the benefit
and the need, except in some very large companies
such as Oil and Gas industries having a centralised
R&D team. In this case, formal methods are used at
R&D level to anlyse particular architectures and to
standardise them. But the formal method culture
does not percolate down to the plants. The system
integrators usually don't have access to this
technology as well. It is not a clear direct
requirement of their customers. The manufacturers
of safety products such as safety Programmable
Logic Controllers, or Smart Instruments, are
supposed to have the suitable engineers within their
team. But there is little visibility through literature,
communications, as well as through third party tests,
on regular activity concerning formal methods within
the major players.

3.6. Railway
3.6.1. Guidelines of the standards

Since the first version of the standard CENELEC EN
50128 in 2001, formal methods have been
introduced and highly recommended. In the new
version of the standard (2011), the V-cycle is
recommended and testing is the basic verification
technique. But from specification to design it is
possible to use formal methods.

The standard introduced the possibility to use the
formal techniques (proof, model-checking, etc.) in
place of tests. For verification, one can choose a
combination of techniques. The standard proposes
some best choices and if one decides to introduce a
new combination one must explain why it is a good
choice and why the proposed set of techniques has
the same efficiency. Each time formal methods

and/or formal techniques are used one must explain
why the efficiency (for some error classes) is similar.

In railway, formal methods are used more and more
and at different levels: specification, architecture,
design, in replacement of unit tests and of
software/software integration test, in data
preparation, etc.

3.6.2. Field experience and feedback

Actually, in all railway projects model-based
development and verification is used at different
levels (system, software, complete software or for
some specific functions), supported by SCADE,
CONTROL-BUILD, or B-Method. For some projects,
proof of properties is applied with some reduction of
testing activities.

The most frequent and extensive used of proof in
replacement of testing activities is related to data
validation. Railway software includes a lot of data
and configurations of data. Proof techniques turned
out to be most efficient to data verification.

3.7. Space
3.7.1. Guidelines of the standards

 In European space the applicable standards are
the series of standards from ECSS, European
Cooperation for Space Standardization and in
particular for software, the software engineering
standard ECSS-E-ST-40C and the software product
assurance standard ECSS-Q-ST-80C. As a
summary one can say that formal methods are
recognized as possible means to support software
development and validation and their justification. In
particular for the highest two criticality categories
(so-called “safety-critical software”) it is required to
develop “a logical model” of the software, including a
behavioral view using automata, and “an analyzable
computational model’, and their verification. It is also
indicated that for the highest three categories (so-
called “critical software”), measures can include
“formal design language for formal proof”. However
in more general terms it is indicated that verification
is based on a combination of testing and analysis
(including reviews and inspections) and that the
strategy for verification (including the intended
combination and its justification) must be
documented and justified. In usual practice, this
generally means that the verification baseline is
primarily through testing, possibly complemented by
“analysis” (not necessarily and not usually formal
proofs) when testing is not possible for some reason
to justify. In particular one can note that testing is
mandatory, up to structural coverage criteria varying
according to the criticality category, not mentioning
the ability to use formal methods as alternate means.

3.7.2. Field experience and feedback

In European space projects, applicable ECSS
standards are always detailed, tailored and
complemented under the form of specific
requirements applicable to the project, also taking
into account industry specific processes and
practice, and research and development studies.

In this respect one should note an increasing
importance of formal methods. However the major
focus is more on model-based software engineering
(and associated tool support in particular integrated
development environment) rather than specifically on
formal proofs even though in practice this is also
covered through the progressive (formal) verification
of modelling steps and formal model transformation
techniques down to automatic code generation.

Acquired experience in advanced studies, is
progressively introduced in operational practice even
though this one remains nowadays somehow limited
apart noticeable usage of static analysis for run-time
errors, generation of code e.g., from mathematical
models of control laws, or formal analysis of some
specific critical behaviors (e.g., an initialization or
deployment sequence for a complex spacecraft).

4. A cross-domain analysis of verification
coverage

Little is said in the reviewed standards about joint
use of testing and formal verification. In the recent
DO-333, the approach is a split and cumulative
policy: applicability of the core document on the
testing part, applicability of DO-333 on the FM part.
In case of FM-testing mix, both sets of objectives are
to be met.

In this section, of more prospective nature, a cross-
domain rationale of verification coverage is explored,
keeping in mind three kinds of FM-Testing mix:
• Partitioning: testing and FM are used on different

verification activities, they never overlap,
• Substitution: some tests are no longer performed,

they are replaced by formal verification, on the
whole activity,

• Weaving: FM and test are used on the same
integrated verification activity. FM is the baseline,
testing is used here and there to trade coverage
against cost-effectiveness on time consuming
proofs [4].

All standards resort to structural coverage analysis
as a DAL-dependent testing completion criterion.
The higher the criticality, the greater the structural
coverage. It plays the role of rigor metrics, but little
information is given on the rationale linking
“structural coverage” to “verification coverage”.

What is verification coverage? How does structural
coverage contribute to verification coverage? Is its
contribution proper to testing or relevant for formal
methods as well?

DO-178 is the only one of the six standards to
emphasize three added values of structural
coverage analysis, as achieved by specification-
based2 testing (Figure 2):

1. detection of some missing test cases to
verify a requirement,

2. detection of some missing requirement,
3. detection of the code deactivated or

potentially non reachable (so-called "dead
code"). “Dead code” has to be chased as
potential source of unintended functions.

Figure 2: Cross-domain rationale of verification

coverage derived from DO-178

This detection is not claimed to be complete. It is
regarded as a valuable enabler worth the high cost
of high coverage ratios (e.g. MC/DC 100%).

In this rationale that stemmed from testing, what
would be superseded by Formal Methods?

FMs solve issue 1. It may be argued that structural
coverage analysis is not proper to testing because it
is an enabler of specification completeness (issue 2
and 3) and specification completeness is key in
specification-based verification as required by DO-
178, ECSS-Q-ST-8OC, IEC 60880, EN 50128 and
by ISO 26262 to some extent.

Figure 3 attempts to illustrate, in the behavioural
space, the issue of unintended function detection. It
applies to the integrated software and its actual
execution environment (hardware, system, and the
system's physical and human environment). The
behavioural space is the infinite set of MIMO I/O
(Multiple Inputs Multiple Outputs) traces that are
observed at development time, and may be
observed at operation time. Each point of the 2D

2 Named requirement-based testing in DO-178

figure represents a black box observation at the
software boundaries, for a domain-dependent
duration (hours for transportation, days, months or
years for energy, process and space).

Figure 3: conceptual representation of three kinds of
unintended functions

Economic constraints tend to:
• minimize the development-time (a few months or

years) and the number of system verifiers (a few
tens to hundreds),

• maximize the operation-time (decades) and the
number of system users (thousands, millions or
more)

The behavioural part of verification coverage could
be intuitively defined as the proportion of operation-
time behavioural space that was explored by the
verification activities at development time.

The economic min-max duality, common to all
domains but with significant and regulation
dependent variability, is source of unbalance
between the respective sizes of these two
behavioural spaces. Likelihood of occurrence of
unintended functions at operation time is
proportionate to this unbalance.

Property space is the second component of
verification coverage. Property coverage could be
defined (loosely again, and independently of any
tractability consideration) as the ratio of user-
expected properties actually formalized at
development time into test oracles or FM artefacts.

Correctness, used mainly in FM, is behavioural
conformance with the explicit properties. The
properties that are needed but remain implicit are the
second source of unintended functions. FM and
Testing are equally powerless to verify these
properties, as both need computable predicates over
concrete or abstract values.

In figure 3, Acceptable vs. Unacceptable is used in
the implicit part of the property space to distinguish

from Correct vs. Incorrect in the explicit part (green /
red and transparent / dense).

As mentioned previously, most of the standards
advocate specification-based verification and use
structural coverage as a termination criterion. Fewer
recommend non activated code analysis. DO-178
and ECSS-Q80 are singular in requiring dead code
removal.

The implicit vs. explicit partitioning of the property
space is not represented in figure 4. It should lead to
a two-layered validity mapping on the whole
unfolded behavioural space, i.e. a 3D figure 3. Each
point has a dense and a transparent colour (green if
all the properties of the specification are satisfied,
red if any is not satisfied).

A hopefully insightful though possibly misleading
partitioned fusion of the two status layers was
introduced in Figure 3. The sharp rectangular frontier
between the statuses of implicit and explicit
properties attempts to figure out the situation at the
end of development time:

I. All the explicitly specified properties have a
status on the explored subset of the
behavioural space. These statuses aggregate
in a conformance status represented by each
point's dense colour.

II. The status of all the needed but still implicit
properties (the forgotten additional
specification) on that behavioural subset is
accessible through “God’s eye view3” only.
This second map lies underneath the dense
one.

III. So it is for the status of the explicit properties
on the executions cases that lie outside of that
subspace, and that may occur for the first time
in operation. FMs help minimizing this
additional behavioural space not covered by
verification.

This non covered behavioural space, that may exist
even when using exhaustive verification means like
FMs, is represented in a way commensurate to the
min-max unbalance. Why?

Neighbourhood in Figure 3's 2D symbolic
representation of the high dimensional trace space is
trace neighbourhood, i.e. behavioural proximity. Two
close traces may occur at very different dates of
development or operation time. Conversely two
distant traces may occur in a row, the very same
day.

So, why suggesting that there is a link between
behavioural space, usage intensity during operation,

3 As used e.g., in estimation theory for absolute or
asymptotic knowledge.

and verification coverage? Because of the role that
the assumptions play in verification, by testing and
even more so by formal methods. Behavioural
properties (implicit and explicit) are of the form:

condition(trace)=> constraint(trace)

where the condition is a predicate mostly on inputs,
and constraint a functional predicate constraining the
output trace w.r.t. the input trace. When the condition
part is false the property's status is true because the
constraint part of the property is not applicable in
such an input context. The associated trace point is
marked green on the map of explicit properties.

Assumption tuning depends on tuning verification
cost. Assumption coverage ratio4 depends on usage
intensity at operation time. As the embedded system
and its environment evolve over large periods of time
and under stress of even larger user populations, the
likelihood of still meeting all the assumptions made
at development time is likely to drop.

The role of assumptions is symbolized by the light
grey zone in figure 3, suggesting some sort of
shadow that may doom the specification validity
map. DO-333 (§4.3, 6.2.1, 6.7.1) assigns dedicated
objectives to ensure controlled use of assumptions.

In spite of its acknowledged possibly misleading
features, figure 3 attempts to depict three kinds of
unintended functions (UFs):

1. Specified property violation by a non-tested
execution case. This first kind is addressed by
formal methods' exhaustiveness,

2. Specified property violation on parts of the
operation-time behavioural space not included in
the development-time behavioural space.
Includes assumption coverage failure,

3. Property emergence, in two cases:
o in the behavioural space covered by

verification, an operation-time execution case
“pops-up” a property left in the implicit part of
the property space, that should have been
formalized and verified,

o same as before, but the triggering operational
behaviour was not covered by verification.

DO-178 and some other standards more or less
aligned on the same verification rationale
(specification-based testing or analysis prior to
structural coverage analysis), advocate a
contribution to unintended function detection. On
which kind of unintended functions?

Structural Coverage Analysis is an enabler for kind
1: the non activated parts of the structure may, once
activated, violate some explicit properties. It may be

4 Probability of assumption violation in operation

an enabler for kind 2 if the non activated parts of the
structure suggest valid weaker conditions on inputs
that would activate them. Kind 3 may be regarded as
the case of specification completeness explicitly at
stake in section 6.7 of DO-333.

So Structural Coverage Analysis is neither direct nor
complete for UF detection. It provides so to speak
another viewpoint on the behavioural space covered
by testing, an inner view on it. Admittedly,
confronting two different views, the outer functional
and the inner structural, on the same complex object
may help to grasp it. In addition, it may also have
positive side-effects on the position of the
implicit/explicit frontier in the property space.
Structural Coverage Analysis contributes to the two
components of verification coverage.

5. Structural coverage in joint use of FM and
testing

Should then Structural Coverage Analysis be
extended to FM verification because a significant
part of its value is not specific to testing?

Structural Coverage Analysis is costly and indirect in
its effects. Moreover, introducing structural coverage
analysis in static analysis tools would face some
serious difficulties:
• Set-based accessibility analysis in code or model

structures would have to be exact, which is either
undecidable, or NP-hard, i.e. intractable.

• Cumulating the coverage metrics over different
static analysis tools and testing tools would be
exceedingly difficult,

• Qualifying the correctness of such hybrid
structural coverage analysis tools would be at
best very expensive, and at worst not convincing.

Since detection of type-2 (assumption violation) and
type-3 (property emergence) unintended functions is
the benefit of Structural Coverage Analysis to be
preserved whatever verification method is used, why
not looking for means directly aimed at these
detections? FM and testing can both help detecting
these types of unintended functions, i.e. check the
assumptions on enlarged behavioural spaces, and
foster property emergence.

FMs offer means to formally verify properties on the
explicit (and formalized) part of specifications. As
formalization foster both ambiguity removal and
completeness, proving properties on the
specification would enhance this property
emergence effect. Double independent formalization
of the specification, with or without proof of
equivalence of the two different formulations, would
be another property emergence enabler. Definitely
more costly, it would probably also be more efficient
than proving properties of properties.

The previous two methods foster the detection of
unintended functions in the property space
component of verification coverage, as FM can
compute in this space. The third and last one is
exploratory testing. Exploratory testing is akin to
validation testing: it is oracle-free testing, a more
"free-style" and user centric exploration of software
behaviour, looking for behavioural oddities or worse.
Since there is no or fewer plans, no or fewer oracles,
there is less opportunity for mind biased by
assumptions and specified properties. Exploratory
testing operates on the behavioural space. It was
represented on figure 3 as two arrows orthogonal to
that of specification-based verification. Specification-
less is orthogonal to specification-based.

Already extensively practiced in the six industrial
domains at system validation stage, could a cross-
domain rationale trading less structural coverage
against more exploratory tests be elaborated? Like
stress testing of physical equipments that for
instance manage to exercise a 10-year lifespan in a
1-month stress-test campaign, might the same
approach be attempted to explore a larger part of the
behavioural space?

New means may be considered in this respect,
though linear CPU time increase faces exponentials:

1. Serious gaming environments. They would
make the software accessible through
affordable on-line high accuracy operational
environments, to a larger group of beta testers,

2. Usage-driven (machine learning on previous
developments) stochastic testing on HPC
facilities.

6. Conclusion and perspectives

There is a wide range of guidelines in the reviewed
standards regarding testing, formal methods and
verification coverage. Practice known to the authors
varies a lot as well, but consistently with the
standards, except in process industry where practice
lags behind regulatory guidelines.

Railway, more recently Aeronautics, and to some
extent Nuclear, are the three industrial domains
where using formal methods, alone or jointly with
testing, is effective in production software
development. In case of joint use, three modes of
combination may be considered, depending on
whether one partitions, substitutes or intertwines the
two verification means.

The paper reviewed some high level principles of the
standards in their way to address safety, and then
proceeded to greater detail on the six industrial
domains separately. The last part, more conceptual,
is a tentative framework to analyse verification
coverage in a cross-domain way, applicable to FM

and testing, to software and system. It figured out
why structural coverage analysis may be regarded
as not proper to testing but not worth the pain of
being extended to FM.

Alternative and more direct means to address
detection of unintended functions have been
proposed FM-verification of the specification, double
independent specification, and enhanced exploratory
testing. They help improve, hopefully as effectively
as structural coverage, property coverage and
assumption coverage, two components of
verification coverage that condition existence of
unintended functions.

7. References

[1] P. Baufreton, JP. Blanquart, JL. Boulanger, H.
Delseny, JC. Derrien, J. Gassino, G. Ladier, E.
Ledinot, M. Leeman, J. Machrouh, P. Quéré, B.
Ricque, “Multi-domain comparison of safety
standards”, ERTS-2010, Toulouse, 19-21 May
2010, Toulouse, France.

[2] E. Ledinot, J. Gassino, JP. Blanquart, JL.
Boulanger, P. Quéré, B. Ricque “A cross-domain
comparison of software development assurance”,
ERTS-2012, Toulouse, 1-3 February 2012,
Toulouse, France.

[3] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, B.
Monate, "Testing or Formal Verification: DO-178C
Alternatives". IEEE Software Engineering n° xx,
May 2013.

[4] E. Ledinot, D. Pariente, Formal methods and
compliance to the DO-178C / ED-12C standard in
Aeronautics, in Static Analysis of Software, J.L
Boulanger Editor, Wiley 2012.

[ECSS-Q80] “Space product assurance – Software
product assurance”, European Cooperation for
Space Standardisation, ECSS-Q-ST-80C, 6/32009.

[ED12C/DO178C] “Software considerations in
airborne systems and equipment certification”,
EUROCAE ED-12 and RTCA DO-178, issue C,
01/05/2012.

[ED216/DO333] EUROCAE/RTCA. “Formal Methods
Supplement to DO-178C/ED-12C and DO-
278A/ED-109A”, ED-216/DO-333, (2011)

[EN 50128] “Railway applications –
Communications, signalling and processing
systems – Software for railway control and
protection systems”, CENELEC, EN 50128:2001,
15/5/2001

[IEC 60880] “Nuclear power plants – Instrumentation
and control systems important to safety – Software
aspects for computer-based systems performing
category A functions”, IEC 60880, edition 2.0,
2006-05.

[ISO 26262] “Road vehicles – Functional safety”
ISO 26262 Parts 1-9, first edition, 2011-11-15
ISO 26262 Part 10, first edition, 2012-08-01

	1. Introduction
	2. Variability of approaches to verification
	3. Formal methods and testing: a domain wise survey
	3.1. Aeronautics
	3.1.1. Highlights on the formal methods technical supplement (ED-216/DO-333)
	3.1.2. Field experience and feedback

	3.2. Automotive
	3.2.1. Requirements and recommendations of the standard

	3.3. Field experience and feedback
	3.4. Nuclear
	3.4.1. Guidelines of the standards
	3.4.2. Field experience and feedback

	3.5. Process and Manufacturing
	3.5.1. Formal methods and tests in the standards IEC 61508, IEC 61511 and IEC 62061:
	3.5.2. State of the art in these industries:

	3.6. Railway
	3.6.1. Guidelines of the standards
	3.6.2. Field experience and feedback

	3.7. Space
	3.7.1. Guidelines of the standards
	3.7.2. Field experience and feedback

	4. A cross-domain analysis of verification coverage
	5. Structural coverage in joint use of FM and testing
	6. Conclusion and perspectives
	7. References

